Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118422

Modifications of myelin basic protein in DM20 transgenic mice are similar to those in myelin basic protein from multiple sclerosis.

F G Mastronardi, B Mak, C A Ackerley, B I Roots, and M A Moscarello

Department of Biochemistry, Hospital for Sick Children, Toronto, Canada.

Find articles by Mastronardi, F. in: PubMed | Google Scholar

Department of Biochemistry, Hospital for Sick Children, Toronto, Canada.

Find articles by Mak, B. in: PubMed | Google Scholar

Department of Biochemistry, Hospital for Sick Children, Toronto, Canada.

Find articles by Ackerley, C. in: PubMed | Google Scholar

Department of Biochemistry, Hospital for Sick Children, Toronto, Canada.

Find articles by Roots, B. in: PubMed | Google Scholar

Department of Biochemistry, Hospital for Sick Children, Toronto, Canada.

Find articles by Moscarello, M. in: PubMed | Google Scholar

Published January 15, 1996 - More info

Published in Volume 97, Issue 2 on January 15, 1996
J Clin Invest. 1996;97(2):349–358. https://doi.org/10.1172/JCI118422.
© 1996 The American Society for Clinical Investigation
Published January 15, 1996 - Version history
View PDF
Abstract

Transgenic mice containing different numbers of transgenes (2-70) of the myelin proteolipid protein DM20 were phenotypically normal up to 3 mo of age, after which the mice containing 70 copies of the transgene spontaneously demyelinated and died at 10-12 mo. Since we demonstrated that demyelination in multiple sclerosis involved specific chemical changes in myelin basic protein (MBP), we investigated the MBP in our transgenic line for similar changes. Both the total amount of MBP in brain and the MBP mRNA levels were unaffected at the different ages. All the isoforms (14-21 kD) of MBP were present, but the microheterogeneity (a posttranslational event) was changed resulting in a higher proportion of the less cationic components reminiscent of the changes in MBP found in multiple sclerosis. An increased amount of the citrullinated form of MBP was found by Western blot analysis. Immunogold labeling of cryosections of brain revealed a greater density of particles with the anticitrulline antibody at 10 mo and that the levels of peptidylarginine deiminase (which deiminates protein-bound arginine to citrulline) were increased. This stable transgenic line represents a useful animal model for the human disease multiple sclerosis.

Version history
  • Version 1 (January 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts