Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118407

Digoxin reduces beta-adrenergic contractile response in rabbit hearts. Ca(2+)-dependent inhibition of adenylyl cyclase activity via Na+/Ca2+ exchange.

K Nagai, T Murakami, T Iwase, T Tomita, and S Sasayama

Department of Internal Medicine, Kyoto University Hospital, Japan.

Find articles by Nagai, K. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Kyoto University Hospital, Japan.

Find articles by Murakami, T. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Kyoto University Hospital, Japan.

Find articles by Iwase, T. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Kyoto University Hospital, Japan.

Find articles by Tomita, T. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Kyoto University Hospital, Japan.

Find articles by Sasayama, S. in: JCI | PubMed | Google Scholar

Published January 1, 1996 - More info

Published in Volume 97, Issue 1 on January 1, 1996
J Clin Invest. 1996;97(1):6–13. https://doi.org/10.1172/JCI118407.
© 1996 The American Society for Clinical Investigation
Published January 1, 1996 - Version history
View PDF
Abstract

Whereas mobilization of intracellular Ca2+ stimulates neuronal adenylyl cyclase via Ca2+/calmodulin, mobilized Ca2+ directly inhibits adenylyl cyclase in other tissues. To determine the physiologic role of the Ca(2+)-dependent interaction between Na+/Ca2+ exchange and beta-adrenergic signal transduction in the intact heart, digoxin (0.3 mg/kg) was administered intravenously in rabbits. 30 min after the administration, digoxin impaired the peak left ventricular dP/dt response to dobutamine infusions by up to 38% as compared with control rabbits. This impairment was not caused by changes in either beta-adrenergic receptor number or in the functional activity of stimulatory guanine nucleotide-binding protein. It was associated with 33-36% reductions in basal and stimulated adenylyl cyclase activities. Animals treated with calcium gluconate (20 mg/kg/min for 30 min) also demonstrated similar reductions in adenylyl cyclase activities. In addition, increasing the free Ca2+ concentration progressively inhibited adenylyl cyclase activity in the control, digoxin-treated, and calcium gluconate-treated sarcolemma preparations in vitro. Moreover, digoxin and calcium gluconate pretreatment blunted the increase in cAMP in myocardial tissue after dobutamine infusion in vivo. Thus, digoxin rapidly reduces beta-adrenergic contractile response in rabbit hearts. This reduction may reflect an inhibition of adenylyl cyclase by Ca2+ mobilized via Na+/Ca2+ exchange.

Version history
  • Version 1 (January 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts