Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo. Induction by tumor necrosis factor-alpha and lipopolysaccharide.
F Samad, K Yamamoto, D J Loskutoff
F Samad, K Yamamoto, D J Loskutoff
View: Text | PDF
Research Article

Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo. Induction by tumor necrosis factor-alpha and lipopolysaccharide.

  • Text
  • PDF
Abstract

Although elevated plasma plasminogen activator inhibitor 1 (PAI-1) is associated with obesity, very little is known about its tissue or cellular origin, or about the events that lead to increased PAI-1 levels under obese conditions. Since TNF-alpha is increased in rodents both during obesity and in response to endotoxin treatment, we examined the effects of these agents on PAI-1 gene expression in the adipose tissue of CB6 mice. In untreated mice, PAI-1 mRNA was detected in both mature adipocytes and in stromal vascular cells. Both TNF-alpha and endotoxin significantly increased PAI-1 mRNA in the adipose tissue, peaking at 3-8 h. In situ hybridization analysis of adipose tissue from untreated mice revealed a weak signal for PAI-1 mRNA only in the smooth muscle cells within the vascular wall. In contrast, after endotoxin or TNF-alpha treatment, PAI-1 mRNA also was detected in adipocytes and in adventitial cells of vessels. Endotoxin also induced PAI-1 in endothelial cells, while TNF-alpha additionally induced it in smooth muscle cells. Mature 3T3-L1 adipocytes in culture also expressed PAI-1 mRNA, and its rate of synthesis was also upregulated by TNF-alpha. These studies suggest that the adipose tissue itself may be an important contributor to the elevated PAI-1 levels observed in the plasma under obese conditions.

Authors

F Samad, K Yamamoto, D J Loskutoff

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 699 26
PDF 150 15
Citation downloads 111 0
Totals 960 41
Total Views 1,001
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts