We investigated the effects of change in basolateral osmolality on Na(+)-dependent myo-inositol uptake in Madin-Darby canine kidney cells to test our hypothesis that the Na+/myo-inositol transporter (SMIT), an osmolyte transporter, is mainly regulated by osmolality on the basolateral surface. A significant osmotic gradient between both sides of the epithelium persisted at least 10 h after basolateral osmolality was increased. [3H]myo-inositol uptake increased in a basolateral osmolality-dependent manner. The magnitude of the increase is comparable to that for making both sides hypertonic. Apical hypertonicity also increased the uptake on the basal side, but the magnitude of the increase was significantly smaller than the basolateral or both sides hypertonicity. Betaine-gamma-amino-n-butyric acid transporter activity, measured by [3H]gamma-amino-n-butyric uptake, showed a pattern similar to SMIT activity in response to basolateral hypertonicity. The most plausible explanation for the polarized effect of hypertonicity is that the basal membrane is much more water permeable than the apical membrane. These results seem to be consistent with the localization and regulation of the SMIT in vivo.
A Yamauchi, T Sugiura, T Ito, A Miyai, M Horio, E Imai, T Kamada
Usage data is cumulative from July 2024 through July 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 198 | 4 |
108 | 9 | |
Citation downloads | 81 | 0 |
Totals | 387 | 13 |
Total Views | 400 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.