Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118379

Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects.

R Taylor, I Magnusson, D L Rothman, G W Cline, A Caumo, C Cobelli, and G I Shulman

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.

Find articles by Taylor, R. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.

Find articles by Magnusson, I. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.

Find articles by Rothman, D. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.

Find articles by Cline, G. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.

Find articles by Caumo, A. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.

Find articles by Cobelli, C. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.

Find articles by Shulman, G. in: JCI | PubMed | Google Scholar

Published January 1, 1996 - More info

Published in Volume 97, Issue 1 on January 1, 1996
J Clin Invest. 1996;97(1):126–132. https://doi.org/10.1172/JCI118379.
© 1996 The American Society for Clinical Investigation
Published January 1, 1996 - Version history
View PDF
Abstract

Despite extensive recent studies, understanding of the normal postprandial processes underlying immediate storage of substrate and maintenance of glucose homeostasis in humans after a mixed meal has been incomplete. The present study applied 13C nuclear magnetic resonance spectroscopy to measure sequential changes in hepatic glycogen concentration, a novel tracer approach to measure postprandial suppression of hepatic glucose output, and acetaminophen to trace the pathways of hepatic glycogen synthesis to elucidate the homeostatic adaptation to the fed state in healthy human subjects. After the liquid mixed meal, liver glycogen concentration rose from 207 +/- 22 to 316 +/- 19 mmol/liter at an average rate of 0.34 mmol/liter per min and peaked at 318 +/- 31 min, falling rapidly thereafter (0.26 mmol/liter per min). The mean increment at peak represented net glycogen synthesis of 28.3 +/- 3.7 g (approximately 19% of meal carbohydrate content). The contribution of the direct pathway to overall glycogen synthesis was 46 +/- 5 and 68 +/- 8% between 2 and 4 and 4 and 6 h, respectively. Hepatic glucose output was completely suppressed within 30 min of the meal. It increased steadily from 60 to 255 min from 0.31 +/- 32 to 0.49 +/- 18 mg/kg per min then rapidly returned towards basal levels (1.90 +/- 0.04 mg/kg per min). This pattern of change mirrored precisely the plasma glucagon/insulin ratio. These data provide for the first time a comprehensive picture of normal carbohydrate metabolism in humans after ingestion of a mixed meal.

Version history
  • Version 1 (January 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts