Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Glucosamine induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal muscle. Implications for glucose toxicity.
A D Baron, … , L Maianu, W T Garvey
A D Baron, … , L Maianu, W T Garvey
Published December 1, 1995
Citation Information: J Clin Invest. 1995;96(6):2792-2801. https://doi.org/10.1172/JCI118349.
View: Text | PDF
Research Article

Glucosamine induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal muscle. Implications for glucose toxicity.

  • Text
  • PDF
Abstract

Glucosamine (Glmn), a product of glucose metabolism via the hexosamine pathway, causes insulin resistance in isolated adipocytes by impairing insulin-induced GLUT 4 glucose transporter translocation to the plasma membrane. We hypothesized that Glmn causes insulin resistance in vivo by a similar mechanism in skeletal muscle. We performed euglycemic hyperinsulinemic clamps (12 mU/kg/min + 3H-3-glucose) in awake male Sprague-Dawley rats with and without Glmn infusion at rates ranging from 0.1 to 6.5 mg/kg/min. After 4h of euglycemic clamping, hindquarter muscles were quick-frozen and homogenized, and membranes were subfractionated by differential centrifugation and separated on a discontinuous sucrose gradient (25, 30, and 35% sucrose). Membrane proteins were solubilized and immunoblotted for GLUT 4. With Glmn, glucose uptake (GU) was maximally reduced by 33 +/- 1%, P < 0.001. The apparent Glmn dose to reduce maximal GU by 50% was 0.1 mg/kg/min or 1/70th the rate of GU on a molar basis. Control galactosamine and mannosamine infusions had no effect on GU. Relative to baseline, insulin caused a 2.6-fold increase in GLUT 4 in the 25% membrane fraction (f), P < 0.01, and a 40% reduction in the 35%f, P < 0.05, but had no effect on GLUT 4 in the 30% f, P= NS. Addition of Glmn to insulin caused a 41% reduction of GLUT 4 in the 25%f, P < 0.05, a 29% fall in the 30%f, and prevented the reduction of GLUT 4 in the 35% f. The 30%f membranes were subjected to a second separation with a 27 and 30% sucrose gradient. Insulin mobilized GLUT 4 away from the 30%f, P < 0.05, but not the 27% f. In contrast, Glmn reduced GLUT 4 in the 27%f, P < 0.05, but not the 30%f. Thus Glmn appears to alter translocation of an insulin-insensitive GLUT 4 pool. Coinfusion of Glmn did not alter enrichment of the sarcolemmal markers 5'-nucleotidase, Na+/K+ATPase, and phospholemman in either 25, 30, or 35% f. Thus Glmn completely blocked movement of Glut 4 induced by insulin. Glmn is a potent inducer of insulin resistance in vivo by causing (at least in part) a defect intrinsic to GLUT 4 translocation and/or trafficking. These data support a potential role for Glmn to cause glucose-induced insulin resistance (glucose toxicity).

Authors

A D Baron, J S Zhu, J H Zhu, H Weldon, L Maianu, W T Garvey

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts