Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Sustained inhibition of intimal thickening. In vitro and in vivo effects of polymeric beta-cyclodextrin sulfate.
W B Bachinsky, … , J E Tomaszewski, M A Golden
W B Bachinsky, … , J E Tomaszewski, M A Golden
Published December 1, 1995
Citation Information: J Clin Invest. 1995;96(6):2583-2592. https://doi.org/10.1172/JCI118322.
View: Text | PDF
Research Article

Sustained inhibition of intimal thickening. In vitro and in vivo effects of polymeric beta-cyclodextrin sulfate.

  • Text
  • PDF
Abstract

Intimal thickening after vascular injury may be modulated in part by heparin binding growth factors. We hypothesized that placement of a therapeutic polymer in the periadventitial space capable of tightly binding growth factors might alter the vascular response to injury. We first demonstrated that incubation of rat aortic smooth muscle cells with an insoluble, sulfated polymer of beta-cyclodextrin (P-CDS) was associated with a dose-dependent inhibition of proliferation induced by fetal calf serum, fibroblast growth factor-2 (FGF-2), platelet-derived growth factor BB, or epidermal growth factor. Preincubation studies of P-CDS with FGF-2 revealed a very rapid removal of mitogenic activity. Using radiolabeled FGF-2 (0.25 microg/ml), we observed a very rapid association rate (0.34 +/- 0.07 min-1, n=4) and a very slow dissociation rate (3.3 +/- 0.2 X 10(-7) min-1) at 37 degrees C, suggesting a high affinity interaction. Using both Transwell and linear under-agarose assays, we demonstrated a significant inhibition of random migration (chemokinesis) by P-CDS. Unsulfated polymeric beta-cyclodextrin (P-CD) had little if any of these effects, suggesting that the high negative charge density of P-CDS was important for the effects. Finally, rats undergoing carotid artery balloon injury were randomized to treatment with periadventitial P-CDS or no treatment, and were killed at 4 (n=20), 14 (n=59), and 88 d (n=14). Morphometric analysis demonstrated significant and sustained inhibition of intimal thickening in P-CDS-treated rats at 14 (P < 0.01) and 88 d (P < 0.05) using absolute intimal area or intima/media area ratios. No inhibition was seen in a group of rats treated with P-CD. In P-CDS-treated rats, bromodeoxyuridine labeling studies revealed fewer labeled smooth muscle cells in the intima at 14 d (P=0.01), while staining with Evans blue revealed enhanced late endothelial cell regrowth. Thus, periadventitially applied sulfated beta-cyclodextrin polymer, which can tightly bind heparin binding growth factors, inhibits intimal thickening in vivo in a sustained fashion without using an additional delivery system. These studies suggest that cellular processes mediated by heparin binding growth factors may be modulated by P-CDS.

Authors

W B Bachinsky, E S Barnathan, H Liu, S S Okada, A Kuo, P N Raghunath, M Muttreja, R J Caron, J E Tomaszewski, M A Golden

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 108 7
PDF 60 10
Scanned page 462 0
Citation downloads 65 0
Totals 695 17
Total Views 712
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts