Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Endothelium-derived free radicals: for worse and for better
Paul M. Vanhoutte
Paul M. Vanhoutte
Published January 1, 2001
Citation Information: J Clin Invest. 2001;107(1):23-25. https://doi.org/10.1172/JCI11832.
View: Text | PDF
Commentary

Endothelium-derived free radicals: for worse and for better

  • Text
  • PDF
Abstract

Authors

Paul M. Vanhoutte

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Proposed interactions between NO and superoxide anions (O2•–) in the reg...
Proposed interactions between NO and superoxide anions (O2•–) in the regulation of endothelium-dependent responses. NO synthase (NOS) produces both NO and superoxide anions. Under normal circumstances, and in most arteries, the production of NO predominates, and NO scavenges the small amounts of superoxide anion formed. In the small mesenteric artery of the mice, the superoxide anions that escape the scavenging by NO are transformed by SOD to H2O2, which diffuses to the vascular smooth muscle and causes its hyperpolarization (Hyperpol.) by opening of a K+ conductance (KCa2+). NO activates soluble guanylate cyclase (sGC) to produce more cGMP. In arteries such as the canine cerebral arteries, or the aortas of hypertensive or diabetic animals, other sources of production of superoxide anions (e.g., NAD(P)H oxidase [NAD(P)H Ox]) or xanthine oxidase (Xant Ox) are activated when the intracellular Ca2+ concentration increases. The large quantities of superoxide anions formed scavenge most or all of the NO, leading to the production of peroxynitrite (ONOO–). In addition, superoxide anions can be transformed to hydroxyl radicals, which diffuse to the vascular smooth muscle and induce the production of vasoconstrictor endoperoxides (PGH2) and prostanoids (and possibly isoprostanes). The latter activate TP receptors (TP-R) that are coupled positively to the contractile process.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts