Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Intratracheal instillation of keratinocyte growth factor decreases hyperoxia-induced mortality in rats.
R J Panos, … , J S Rubin, L J Smith
R J Panos, … , J S Rubin, L J Smith
Published October 1, 1995
Citation Information: J Clin Invest. 1995;96(4):2026-2033. https://doi.org/10.1172/JCI118250.
View: Text | PDF
Research Article

Intratracheal instillation of keratinocyte growth factor decreases hyperoxia-induced mortality in rats.

  • Text
  • PDF
Abstract

Alveolar type II cell proliferation occurs after many forms of lung injury and is thought to play a critical role in alveolar epithelial repair. Keratinocyte growth factor/fibroblast growth factor 7 (KGF) has been shown to promote alveolar type II cell growth in primary culture and alveolar epithelial hyperplasia in vivo. In this study, we used immunohistochemical analysis to determine the intrapulmonary distribution and cellular localization of recombinant human KGF (rhKGF) instilled into the trachea of rats. 6 h after administration, immunoreactive KGF was observed within the lung parenchyma and along alveolar epithelial cell membranes. By 18-24 h, KGF was detected intracellularly in alveolar epithelial cells and intraalveolar macrophages. Immunoreactive KGF was not demonstrable 48 h after delivery or in lung sections from PBS-treated animals. Intratracheal instillation of 5 mg/kg rhKGF stimulated a marked, time-dependent increase in the alveolar type II cell specific labeling index to a maximum level of 33 +/- 3% 48 h after rhKGF administration compared with 1.3 +/- 0.3% after PBS instillation. In addition, this increase in type II cell proliferation in vivo was documented by flow cytometric analysis of isolated type II cells which revealed a nearly fivefold increase in the proportion of cells traversing through the S and G2/M phases of the cell cycle. To test the hypothesis that KGFs effects on type II cells in vivo might affect the response to lung injury, rats were treated with rhKGF and exposed to hyperoxia. Animals that received 1 or 5 mg/kg rhKGF exhibited dramatically reduced mortality (P < 0.001, for both doses). Survival for animals treated with 0.1 mg/kg rhKGF was not significantly different from either untreated rats or animals treated with heat-denatured rhKGF. The lungs of rhKGF-treated animals that survived hyperoxia exposure had minimal hemorrhage and no exudate within the intraalveolar space. These experiments established that intratracheal administration of rhKGF stimulated alveolar type II cell proliferation in vivo and reduced hyperoxia-induced lung injury in rats. Directed delivery of KGF to the lungs may provide a therapeutic strategy to preserve or restore the alveolar epithelium during exposure to hyperoxia or other injurious agents.

Authors

R J Panos, P M Bak, W S Simonet, J S Rubin, L J Smith

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 278 0
PDF 28 20
Figure 0 1
Scanned page 140 14
Citation downloads 16 0
Totals 462 35
Total Views 497
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts