Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Calcium- and CaMKII-dependent chloride secretion induced by the microsomal Ca(2+)-ATPase inhibitor 2,5-di-(tert-butyl)-1,4-hydroquinone in cystic fibrosis pancreatic epithelial cells.
A C Chao, … , Y J Dong, P Gardner
A C Chao, … , Y J Dong, P Gardner
Published October 1, 1995
Citation Information: J Clin Invest. 1995;96(4):1794-1801. https://doi.org/10.1172/JCI118225.
View: Text | PDF
Research Article

Calcium- and CaMKII-dependent chloride secretion induced by the microsomal Ca(2+)-ATPase inhibitor 2,5-di-(tert-butyl)-1,4-hydroquinone in cystic fibrosis pancreatic epithelial cells.

  • Text
  • PDF
Abstract

Microsomal Ca(2+)-ATPase inhibitors such as thapsigargin (THG), cyclopiazonic acid (CPA) and 2,5-di-(tert-butyl)-1,4-hydroquinone (DBHQ) have been shown to inhibit Ca2+ reuptake by the intracellular stores and increase cytosolic free Ca2+ ([Ca2+]i). DBHQ is a commercially available non-toxic synthetic compound chemically unrelated to THG and CPA. In this study, we tested the feasibility of utilizing DBHQ to improve Cl- secretion via the Ca(2+)-dependent pathway, in the cystic fibrosis (CF)-derived pancreatic epithelial cell line CFPAC-1. DBHQ stimulated 125I efflux and mobilized intracellular free Ca2+ in a dose-dependent manner. The maximal effects were seen at concentrations of 25-50 microM. DBHQ (25 microM) caused a short-term rise in [Ca2+]i in the absence of ambient Ca2+, and a sustained elevation of [Ca2+]i in cell monolayers bathed in the efflux solution (1.2 mM Ca2+), which was largely attenuated by Ni2+ (5 mM). Bath-application of DBHQ induced an outwardly-rectifying whole-cell Cl- current, which was abolished by pipette addition of BAPTA (5 mM) or CaMK [273-302] (20 microM), an inhibitory peptide of multifunctional Ca2+/calmodulin-dependent protein kinase (CaMKII). Pretreatment of monolayers of CFPAC-1 cells with DBHQ for 4-5 min significantly increased the Ca(2+)-independent or autonomous activity of CaMKII assayed in the cell homogenates. Thus, DBHQ appears to enhance Cl- channel activity via a Ca(2+)-dependent mechanism involving CaMKII. Pretreatment of CFPAC-1 cells with up to 50 microM DBHQ for 6 h did not cause any detectable change in cell viability and did not significantly affect the cell proliferation rate. These results suggest that appropriate selective microsomal Ca(2+)-ATPase inhibitors may be therapeutically useful in improving Cl- secretion in CF epithelial cells.

Authors

A C Chao, K Kouyama, E K Heist, Y J Dong, P Gardner

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 138 7
PDF 49 8
Scanned page 280 7
Citation downloads 59 0
Totals 526 22
Total Views 548
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts