Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Possible links between glucose-induced changes in the energy state of pancreatic B cells and insulin release. Unmasking by decreasing a stable pool of adenine nucleotides in mouse islets.
P Detimary, … , J C Jonas, J C Henquin
P Detimary, … , J C Jonas, J C Henquin
Published October 1, 1995
Citation Information: J Clin Invest. 1995;96(4):1738-1745. https://doi.org/10.1172/JCI118219.
View: Text | PDF
Research Article

Possible links between glucose-induced changes in the energy state of pancreatic B cells and insulin release. Unmasking by decreasing a stable pool of adenine nucleotides in mouse islets.

  • Text
  • PDF
Abstract

Whether adenine nucleotides in pancreatic B cells serve as second messengers during glucose stimulation of insulin secretion remains disputed. Our hypothesis was that the actual changes in ATP and ADP are obscured by the large pool of adenine nucleotides (ATP/ADP ratio close to 1) in insulin granules. Therefore, mouse islets were degranulated acutely with a cocktail of glucose, KCl, forskolin, and phorbol ester or during overnight culture in RPMI-1640 medium containing 10 mM glucose. When these islets were then incubated in 0 glucose + azide (to minimize cytoplasmic and mitochondrial adenine nucleotides), their content in ATP + ADP + AMP was decreased in proportion to the decrease in insulin stores. After incubation in 10 mM glucose (no azide), the ATP/ADP ratio increased from 2.4 to > 8 in cultured islets, and only from 2 to < 4 in fresh islets. These differences were not explained by changes in glucose oxidation. The glucose dependency (0-30 mM) of the changes in insulin secretion and in the ATP/ADP ratio were then compared in the same islets. In nondegranulated, fresh islets, the ATP/ADP ratio increased between 0 and 10 mM glucose and then stabilized although insulin release kept increasing. In degranulated islets, the ATP/ADP ratio also increased between 0 and 10 mM glucose, but a further increase still occurred between 10 and 20 mM glucose, in parallel with the stimulation of insulin release. In conclusion, decreasing the granular pool of ATP and ADP unmasks large changes in the ATP/ADP ratio and a glucose dependency which persists within the range of stimulatory concentrations. The ATP/ADP ratio might thus serve as a coupling factor between glucose metabolism and insulin release.

Authors

P Detimary, J C Jonas, J C Henquin

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 228 4
PDF 53 13
Scanned page 314 10
Citation downloads 68 0
Totals 663 27
Total Views 690
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts