Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118201

Changes in procoagulant and fibrinolytic gene expression during bleomycin-induced lung injury in the mouse.

M A Olman, N Mackman, C L Gladson, K M Moser, and D J Loskutoff

Department of Vascular Biology, Scripps Research Institute, La Jolla, California 92037, USA.

Find articles by Olman, M. in: PubMed | Google Scholar

Department of Vascular Biology, Scripps Research Institute, La Jolla, California 92037, USA.

Find articles by Mackman, N. in: PubMed | Google Scholar

Department of Vascular Biology, Scripps Research Institute, La Jolla, California 92037, USA.

Find articles by Gladson, C. in: PubMed | Google Scholar

Department of Vascular Biology, Scripps Research Institute, La Jolla, California 92037, USA.

Find articles by Moser, K. in: PubMed | Google Scholar

Department of Vascular Biology, Scripps Research Institute, La Jolla, California 92037, USA.

Find articles by Loskutoff, D. in: PubMed | Google Scholar

Published September 1, 1995 - More info

Published in Volume 96, Issue 3 on September 1, 1995
J Clin Invest. 1995;96(3):1621–1630. https://doi.org/10.1172/JCI118201.
© 1995 The American Society for Clinical Investigation
Published September 1, 1995 - Version history
View PDF
Abstract

Bleomycin-induced lung injury is an established murine model of human pulmonary fibrosis. Although procoagulant molecules (e.g., tissue factor [TF]) and fibrinolytic components (e.g., urokinase [u-PA] and type 1 plasminogen activator inhibitor [PAI-1]) have been detected in alveolar fluid from injured lungs, the origin of these molecules remains unknown. We therefore examined the expression of procoagulant and fibrinolytic components in relation to the distribution of parenchymal fibrin in bleomycin-injured lungs. Extravascular fibrin localized to the alveolar and extracellular matrix in injured lung tissue. Injured lung tissue extracts contained elevated levels of PAI-1 activity and decreased levels of u-PA activity. Whole lung PAI-1 and TF mRNAs were dramatically induced by lung injury. In situ hybridization of injured lungs revealed that PAI-1, u-PA, and TF mRNAs were induced within the fibrin-rich fibroproliferative lesions, primarily in fibroblast-like and macrophagelike cells, respectively, while TF mRNA was also induced in perilesional alveolar cells. Taken together, these observations suggest that the induction of PAI-1 and TF gene expression plays and important role in the formation and persistence of extracellular fibrin in bleomycin injured murine lungs.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1621
page 1621
icon of scanned page 1622
page 1622
icon of scanned page 1623
page 1623
icon of scanned page 1624
page 1624
icon of scanned page 1625
page 1625
icon of scanned page 1626
page 1626
icon of scanned page 1627
page 1627
icon of scanned page 1628
page 1628
icon of scanned page 1629
page 1629
icon of scanned page 1630
page 1630
Version history
  • Version 1 (September 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts