Clinical interventions that accelerate conversion of cholesterol to bile acids reduce circulating low density lipoprotein (LDL) cholesterol concentrations. The initial and rate-limiting step in the bile acid biosynthetic pathway is catalyzed by hepatic cholesterol 7 alpha-hydroxylase. To examine the effects of transient primary overexpression of this enzyme on sterol metabolism and lipoprotein transport, we constructed a recombinant adenovirus in which a cDNA encoding rat 7 alpha-hydroxylase is expressed from the human cytomegalovirus immediate-early promoter (AdCMV7 alpha). Syrian hamsters administered AdCMV7 alpha intravenously accumulated transgene-specific mRNA in the liver and demonstrated a dose-dependent increase in hepatic microsomal 7 alpha-hydroxylase activity. The increased conversion of cholesterol to bile acids resulted in a compensatory increase in hepatic cholesterol synthesis. In addition, overexpression of 7 alpha-hydroxylase reduced the rate of LDL cholesterol entry into the plasma space and, in animals maintained on a Western-type diet, restored hepatic LDL receptor expression. As a consequence, plasma LDL concentrations fell by approximately 60% in animals maintained on control diet and by approximately 75% in animals consuming a Western-type diet. Plasma high density lipoprotein cholesterol levels were reduced to a lesser degree. These results demonstrate that transient upregulation of bile acid synthesis by direct transfer of a 7 alpha-hydroxylase gene favorably alters circulating lipoprotein profiles and suggest one potential molecular target for genetic strategies aimed at reducing cardiovascular risk.
D K Spady, J A Cuthbert, M N Willard, R S Meidell
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 203 | 5 |
49 | 13 | |
Scanned page | 384 | 1 |
Citation downloads | 74 | 0 |
Totals | 710 | 19 |
Total Views | 729 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.