Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Treatment of severe hypercholesterolemia in apolipoprotein E-deficient mice by bone marrow transplantation.
W A Boisvert, … , J Spangenberg, L K Curtiss
W A Boisvert, … , J Spangenberg, L K Curtiss
Published August 1, 1995
Citation Information: J Clin Invest. 1995;96(2):1118-1124. https://doi.org/10.1172/JCI118098.
View: Text | PDF
Research Article

Treatment of severe hypercholesterolemia in apolipoprotein E-deficient mice by bone marrow transplantation.

  • Text
  • PDF
Abstract

Apo E, a key regulator of cholesterol-rich lipoprotein metabolism, is synthesized by numerous extrahepatic tissues. Although its synthesis in macrophages is documented, the contribution of macrophage-derived apo E to hepatic clearance of serum cholesterol is unknown. To address this issue bone marrow transplantation was performed on hypercholesterolemic apo E-deficient mice with either syngeneic apo E-deficient mouse bone marrow cells (E0-control) or wild-type mouse bone marrow cells expressing apo E (E0-treated). E0-control and E0-treated mice were fed either a regular chow diet or an atherogenic diet (designated E0-control-HF and E0-treated-HF). Serum cholesterol levels dropped dramatically in the E0-treated mice largely due to a reduction in their VLDL cholesterol. No changes were seen in the E0-control mice. After 4 wk serum cholesterol in E0-treated-HF mice was about four-fold lower compared to E0-control-HF animals. Moreover, the extent of atherosclerosis in the E0-treated-HF mice after 14-16 wk was greatly reduced. Wild-type apo E mRNA was detected in the liver, spleen, and brain of the E0-treated mice indicating that apo E gene transfer was successfully achieved through bone marrow transplantation. More importantly, the level of apo E expression was sufficient to reduce the severe hypercholesterolemia of the apo E-deficient mice fed either chow or atherogenic diets.

Authors

W A Boisvert, J Spangenberg, L K Curtiss

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 383 7
PDF 121 15
Figure 0 5
Scanned page 284 12
Citation downloads 90 0
Totals 878 39
Total Views 917
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts