Mononuclear cell infiltration and local cytokine elaboration are hallmarks of inflammatory and immunologic heart diseases. To test the hypothesis that cytokines can modulate cardiac myocyte growth and phenotype, myocytes cultured from neonatal rat hearts were exposed to IL-1 beta, an inflammatory cytokine prevalent in myocardial inflammation. IL-1 beta (2 ng/ml, 24 h) increased [3H]leucine incorporation by 30 +/- 4% (P < 0.001, n = 29) and net cellular protein content by 20 +/- 4% (P < 0.001, n = 27), but had no effect on DNA synthesis. Northern hybridization showed that IL-1 beta increased prepro-atrial natriuretic factor (ANF) mRNA (5.8 +/- 1.5-fold, P < 0.01, n = 13) and beta-myosin heavy chain (beta-MHC) mRNA (> 10-fold, n = 4), and decreased mRNA levels for sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2) (-46 +/- 7%; P < 0.001; n = 11), calcium release channel (CRC) (-65 +/- 11%, P < 0.001, n = 8) and voltage-dependent calcium channel (VDCC) (-53 +/- 7%, P < 0.001, n = 8). NG-monomethyl-L-arginine (1 mM), an inhibitor of nitric oxide (NO) synthesis, did not inhibit the IL-1 beta-induced protein synthesis or changes in mRNA levels. In ventricular myocardium obtained from adult rats treated with lipopolysaccharide (4 mg/kg intraperitoneally 18 h) to stimulate systemic cytokine production, there were changes in the mRNA levels for beta-MHC (6 +/- 1-fold, P < 0.01, n = 4), SERCA2 (-65 +/- 4%, P < 0.0001, n = 4), CRC (-67 +/- 5%, P < 0.001, n = 4), and VDCC (-58 +/- 5%, P < 0.001; n = 4) that were qualitatively similar to those observed in cultured myocytes. Thus, IL-1 beta, acting via an NO-independent mechanism, caused myocyte hypertrophy associated with induction of fetal genes (ANF and beta-MHC) and downregulation of three important calcium regulatory genes (SERCA2, CRC, and VDCC). IL-1 beta may contribute to the abnormal structural and functional alterations of cardiac myocytes in conditions marked by mononuclear cell infiltration.
C M Thaik, A Calderone, N Takahashi, W S Colucci
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 406 | 15 |
180 | 19 | |
Scanned page | 680 | 3 |
Citation downloads | 123 | 0 |
Totals | 1,389 | 37 |
Total Views | 1,426 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.