Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118083

Relationships of generalized and regional adiposity to insulin sensitivity in men.

N Abate, A Garg, R M Peshock, J Stray-Gundersen, and S M Grundy

Center for Human Nutrition, University of Texas Southwestern Medical Center at Dallas 75235-9052, USA.

Find articles by Abate, N. in: PubMed | Google Scholar

Center for Human Nutrition, University of Texas Southwestern Medical Center at Dallas 75235-9052, USA.

Find articles by Garg, A. in: PubMed | Google Scholar

Center for Human Nutrition, University of Texas Southwestern Medical Center at Dallas 75235-9052, USA.

Find articles by Peshock, R. in: PubMed | Google Scholar

Center for Human Nutrition, University of Texas Southwestern Medical Center at Dallas 75235-9052, USA.

Find articles by Stray-Gundersen, J. in: PubMed | Google Scholar

Center for Human Nutrition, University of Texas Southwestern Medical Center at Dallas 75235-9052, USA.

Find articles by Grundy, S. in: PubMed | Google Scholar

Published July 1, 1995 - More info

Published in Volume 96, Issue 1 on July 1, 1995
J Clin Invest. 1995;96(1):88–98. https://doi.org/10.1172/JCI118083.
© 1995 The American Society for Clinical Investigation
Published July 1, 1995 - Version history
View PDF
Abstract

The relative impacts of regional and generalized adiposity on insulin sensitivity have not been fully defined. Therefore, we investigated the relationship of insulin sensitivity (measured using hyperinsulinemic, euglycemic clamp technique with [3-3H]glucose turnover) to total body adiposity (determined by hydrodensitometry) and regional adiposity. The latter was assessed by determining subcutaneous abdominal, intraperitoneal, and retroperitoneal fat masses (using magnetic resonance imaging) and the sum of truncal and peripheral skinfold thicknesses. 39 healthy middle-aged men with a wide range of adiposity were studied. Overall, the intraperitoneal and retroperitoneal fat constituted only 11 and 7% of the total body fat. Glucose disposal rate (Rd) and residual hepatic glucose output (rHGO) values during the 40 mU/m2.min insulin infusion correlated significantly with total body fat (r = -0.61 and 0.50, respectively), subcutaneous abdominal fat (r = -0.62 and 0.50, respectively), sum of truncal skinfold thickness (r = -0.72 and 0.57, respectively), and intraperitoneal fat (r = -0.51 and 0.44, respectively) but not to retroperitoneal fat. After adjusting for total body fat, the Rd and rHGO values showed the highest correlation with the sum of truncal skinfold thickness (partial r = -0.40 and 0.33, respectively). We conclude that subcutaneous truncal fat plays a major role in obesity-related insulin resistance in men, whereas intraperitoneal fat and retroperitoneal fat have a lesser role.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 88
page 88
icon of scanned page 89
page 89
icon of scanned page 90
page 90
icon of scanned page 91
page 91
icon of scanned page 92
page 92
icon of scanned page 93
page 93
icon of scanned page 94
page 94
icon of scanned page 95
page 95
icon of scanned page 96
page 96
icon of scanned page 97
page 97
icon of scanned page 98
page 98
Version history
  • Version 1 (July 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts