Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118060

Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocarcinoma cells.

S J Shiff, L Qiao, L L Tsai, and B Rigas

Rockefeller University Hospital, Laboratory of Human Behavior and Metabolism, New York, New York 10021, USA.

Find articles by Shiff, S. in: PubMed | Google Scholar

Rockefeller University Hospital, Laboratory of Human Behavior and Metabolism, New York, New York 10021, USA.

Find articles by Qiao, L. in: PubMed | Google Scholar

Rockefeller University Hospital, Laboratory of Human Behavior and Metabolism, New York, New York 10021, USA.

Find articles by Tsai, L. in: PubMed | Google Scholar

Rockefeller University Hospital, Laboratory of Human Behavior and Metabolism, New York, New York 10021, USA.

Find articles by Rigas, B. in: PubMed | Google Scholar

Published July 1, 1995 - More info

Published in Volume 96, Issue 1 on July 1, 1995
J Clin Invest. 1995;96(1):491–503. https://doi.org/10.1172/JCI118060.
© 1995 The American Society for Clinical Investigation
Published July 1, 1995 - Version history
View PDF
Abstract

Nonsteroidal antiinflammatory drugs (NSAIDs), have cancer preventive and tumor regressive effects in the human colon. They lower the incidence of and mortality from colorectal cancer and sulindac reduces the number and size of polyps in patients with familial adenomatous polyposis. We studied the effect of sulindac, and its metabolite sulindac sulfide, on the proliferation of HT-29 colon adenocarcinoma cells. Both compounds reduced the proliferation rate of these cells, changed their morphology, and caused them to accumulate in the G0/G1 phase of the cell cycle. These responses were time- and concentration-dependent and reversible. In addition, these compounds reduced the level and activity of several cyclin-dependent kinases (cdks), which regulate cell cycle progression. Sulindac and sulindac sulfide also induced apoptosis in these cells at concentrations that affected their proliferation, morphology, and cell cycle phase distribution. Sulindac sulfide was approximately sixfold more potent than sulindac in inducing these cellular responses. Our results indicate that inhibition of cell cycle progression and induction of apoptotic cell death contribute to the anti-proliferative effects of sulindac and sulindac sulfide in HT-29 cells. These findings may be relevant to the cancer preventive and tumor regressive effects of these compounds in humans.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 491
page 491
icon of scanned page 492
page 492
icon of scanned page 493
page 493
icon of scanned page 494
page 494
icon of scanned page 495
page 495
icon of scanned page 496
page 496
icon of scanned page 497
page 497
icon of scanned page 498
page 498
icon of scanned page 499
page 499
icon of scanned page 500
page 500
icon of scanned page 501
page 501
icon of scanned page 502
page 502
icon of scanned page 503
page 503
Version history
  • Version 1 (July 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts