Certain dihydroxy bile acids cause secretory diarrhea when present in the colonic lumen at inappropriately high concentrations. However, the mechanism underlying the secretagogue activity has not been fully elucidated. Experiments were performed to test whether mast cells and one of their major mediators, histamine, might contribute to the secretory effect. Chenodeoxycholic acid, a secretory bile acid, and ursodeoxycholic acid, a nonsecretory, hydrophilic bile acid, were compared for their ability to induce chloride secretion across segments of mouse colon mounted in Ussing chambers. Chenodeoxycholic acid, but not ursodeoxycholic acid, induced dose-dependent, biphasic chloride secretion that was greater after serosal than mucosal addition and was greater in distal versus proximal colonic segments. The secretory effect of chenodeoxycholic acid was inhibited by H1 histamine receptor antagonists and modified by the cyclooxygenase inhibitor indomethacin. However, it was unaffected by an H2 histamine receptor antagonist or by atropine. Secretory effects of chenodeoxycholic acid were diminished in magnitude and delayed in colonic tissues from mice with a genetic deficiency of tissue mast cells. Concentrations of chenodeoxycholic acid inducing secretion also released histamine from tissue segments. These data indicate that mast cells and histamine-mediated processes contribute significantly to the secretory effects of dihydroxy bile acids in the murine colon.
C M Gelbmann, C D Schteingart, S M Thompson, A F Hofmann, K E Barrett
Usage data is cumulative from July 2024 through July 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 294 | 211 |
72 | 15 | |
Scanned page | 330 | 11 |
Citation downloads | 57 | 0 |
Totals | 753 | 237 |
Total Views | 990 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.