Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Characterization of a protein cofactor that mediates protein kinase A regulation of the renal brush border membrane Na(+)-H+ exchanger.
E J Weinman, … , Y Wang, S Shenolikar
E J Weinman, … , Y Wang, S Shenolikar
Published May 1, 1995
Citation Information: J Clin Invest. 1995;95(5):2143-2149. https://doi.org/10.1172/JCI117903.
View: Text | PDF
Research Article

Characterization of a protein cofactor that mediates protein kinase A regulation of the renal brush border membrane Na(+)-H+ exchanger.

  • Text
  • PDF
Abstract

Activation of cAMP-dependent protein kinase A inhibits the renal proximal tubule brush border membrane Na(+)-H+ exchanger by a process involving participation of a regulatory cofactor (NHE-RF) that is distinct from the transporter itself. Recent studies from this laboratory reported a partial amino acid sequence of this putative cofactor (Weinman, E. J., D. H. Steplock, and S. Shenolikar. 1993. J. Clin. Invest. 92:1781-1786). The present experiments detail the structure of the NHE-RF protein as determined from molecular cloning studies. A codon-biased oligonucleotide probe to a portion of the amino acid sequence of the putative cofactor was used to isolate a 1.9-kb cDNA from a rabbit renal library. The encoded protein is 358 amino acids in length and is rich in proline residues. Search of existing data bases indicates that NHE-RF is a unique protein. Using a reticulocyte lysate, the cDNA translated a product of approximately 44 kD, which was recognized by an affinity-purified polyclonal antibody to NHE-RF. Potential phosphorylation sites for protein kinase A are present. The mRNA for the protein is expressed in kidney, proximal small intestine, and liver. Reverse transcription/PCR studies in the kidney indicate the presence of mRNA for NHE-RF in several distinct nephron segments including the proximal tubule.

Authors

E J Weinman, D Steplock, Y Wang, S Shenolikar

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 284 0
PDF 36 13
Scanned page 140 0
Citation downloads 21 0
Totals 481 13
Total Views 494
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts