Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117873

Extracellular accumulation of potently microbicidal bactericidal/permeability-increasing protein and p15s in an evolving sterile rabbit peritoneal inflammatory exudate.

Y Weinrauch, A Foreman, C Shu, K Zarember, O Levy, P Elsbach, and J Weiss

Department of Microbiology, New York University School of Medicine, New York 10016, USA.

Find articles by Weinrauch, Y. in: PubMed | Google Scholar

Department of Microbiology, New York University School of Medicine, New York 10016, USA.

Find articles by Foreman, A. in: PubMed | Google Scholar

Department of Microbiology, New York University School of Medicine, New York 10016, USA.

Find articles by Shu, C. in: PubMed | Google Scholar

Department of Microbiology, New York University School of Medicine, New York 10016, USA.

Find articles by Zarember, K. in: PubMed | Google Scholar

Department of Microbiology, New York University School of Medicine, New York 10016, USA.

Find articles by Levy, O. in: PubMed | Google Scholar

Department of Microbiology, New York University School of Medicine, New York 10016, USA.

Find articles by Elsbach, P. in: PubMed | Google Scholar

Department of Microbiology, New York University School of Medicine, New York 10016, USA.

Find articles by Weiss, J. in: PubMed | Google Scholar

Published April 1, 1995 - More info

Published in Volume 95, Issue 4 on April 1, 1995
J Clin Invest. 1995;95(4):1916–1924. https://doi.org/10.1172/JCI117873.
© 1995 The American Society for Clinical Investigation
Published April 1, 1995 - Version history
View PDF
Abstract

To what extent the host defense role of granule-associated antibacterial proteins and peptides of PMN includes extracellular action has not been established. To address this question, we have analyzed the antibacterial activity of cell-free (ascitic) fluid (AF) obtained from glycogen-induced sterile inflammatory rabbit peritoneal exudates in which > 95% of the accumulating cells are PMN. AF, but not plasma collected in parallel, exhibits potent activity toward serum-resistant Gram-negative and Gram-positive bacteria. Total and specific antibacterial activity of AF increases during the first 12 h after injection of glycogen in parallel with the influx of PMN. At maximum, > 99% of 10(7) encapsulated Escherichia coli and Staphylococcus aureus are killed in 30 min/ml of AF. Neutralizing antibodies against the bactericidal/permeability-increasing protein (BPI) of PMN abolishes activity of AF toward encapsulated E. coli but has no effect on activity vs staphylococci. However, BPI alone (approximately 1 microgram/ml in AF) can only account for < or = 20% of AF activity toward E. coli. AF also contains 15 kD PMN proteins (p15s) that act in synergy with BPI. Purified BPI and p15s, in amounts present in AF, reconstitute the growth-inhibitory activity of AF toward encapsulated E. coli. These findings show for the first time an extracellular function of endogenous BPI, providing, together with the p15s, a potent microbicidal system toward Gram-negative bacteria resistant to plasma-derived proteins and phagocytes in inflammatory exudates.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1916
page 1916
icon of scanned page 1917
page 1917
icon of scanned page 1918
page 1918
icon of scanned page 1919
page 1919
icon of scanned page 1920
page 1920
icon of scanned page 1921
page 1921
icon of scanned page 1922
page 1922
icon of scanned page 1923
page 1923
icon of scanned page 1924
page 1924
Version history
  • Version 1 (April 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts