Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117859

Myoblast transfer of human erythropoietin gene in a mouse model of renal failure.

Y Hamamori, B Samal, J Tian, and L Kedes

Institute for Genetic Medicine, University of Southern California School of Medicine, Los Angeles 90033, USA.

Find articles by Hamamori, Y. in: JCI | PubMed | Google Scholar

Institute for Genetic Medicine, University of Southern California School of Medicine, Los Angeles 90033, USA.

Find articles by Samal, B. in: JCI | PubMed | Google Scholar

Institute for Genetic Medicine, University of Southern California School of Medicine, Los Angeles 90033, USA.

Find articles by Tian, J. in: JCI | PubMed | Google Scholar

Institute for Genetic Medicine, University of Southern California School of Medicine, Los Angeles 90033, USA.

Find articles by Kedes, L. in: JCI | PubMed | Google Scholar

Published April 1, 1995 - More info

Published in Volume 95, Issue 4 on April 1, 1995
J Clin Invest. 1995;95(4):1808–1813. https://doi.org/10.1172/JCI117859.
© 1995 The American Society for Clinical Investigation
Published April 1, 1995 - Version history
View PDF
Abstract

Anemia is an invariable consequence of end-stage renal failure (ESRF) and recombinant erythropoietin has dramatically improved the quality of life of patients with ESRF. As an alternative approach, we developed a myoblast gene transfer system for the systemic delivery of human erythropoietin (EPO). We recently reported that transplantation of 4 x 10(7) cells of a C2 myoblast cell clone that stably secretes high level of functional human EPO, increased hematocrit from 44.6 +/- 3.0 to 71.2 +/- 7.9(%) in 2 wk, and the increase was sustained for at least 12 wk in nude mice. A renal failure model was created by a two-step nephrectomy in nude mice, and myoblasts were transplanted 3 wk after the second nephrectomy, when mean blood urea nitrogen level had increased from 26.3 +/- 6.1 to 85.4 +/- 24.0 (mg/dl) and the hematocrit had decreased from 45.2 +/- 2.7 to 33.9 +/- 3.7(%). After transplantation, the hematocrit markedly increased to 68.6 +/- 4.2(%) 2 wk, and to 68.5 +/- 4.0(%) 7 wk after the transplantation. Serum human EPO concentration determined by ELISA indicated a persistent steady EPO production from the transplanted muscle cells 8 wk after the transplantation. The fate of transplanted myoblasts in uremic mice was monitored by transplanting the EPO-secreting clone which had also been transduced with BAG retrovirus bearing the beta-galactosidase gene. 8 wk later, X-gal positive myofibers were detected in the entire transplanted area. The results demonstrate that myoblasts can be transplanted in uremic mice, and that myoblast gene transfer can achieve sufficient and sustained delivery of functionally active EPO to correct anemia associated with renal failure in mice.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1808
page 1808
icon of scanned page 1809
page 1809
icon of scanned page 1810
page 1810
icon of scanned page 1811
page 1811
icon of scanned page 1812
page 1812
icon of scanned page 1813
page 1813
Version history
  • Version 1 (April 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts