Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117805

Identification of malignant cells in multiple myeloma bone marrow with immunoglobulin VH gene probes by fluorescent in situ hybridization and flow cytometry.

J Cao, R A Vescio, C H Hong, A Kim, A K Lichtenstein, and J R Berenson

Division of Hematology/Oncology, Department of Veterans Affairs, Los Angeles, California 90073.

Find articles by Cao, J. in: PubMed | Google Scholar

Division of Hematology/Oncology, Department of Veterans Affairs, Los Angeles, California 90073.

Find articles by Vescio, R. in: PubMed | Google Scholar

Division of Hematology/Oncology, Department of Veterans Affairs, Los Angeles, California 90073.

Find articles by Hong, C. in: PubMed | Google Scholar

Division of Hematology/Oncology, Department of Veterans Affairs, Los Angeles, California 90073.

Find articles by Kim, A. in: PubMed | Google Scholar

Division of Hematology/Oncology, Department of Veterans Affairs, Los Angeles, California 90073.

Find articles by Lichtenstein, A. in: PubMed | Google Scholar

Division of Hematology/Oncology, Department of Veterans Affairs, Los Angeles, California 90073.

Find articles by Berenson, J. in: PubMed | Google Scholar

Published March 1, 1995 - More info

Published in Volume 95, Issue 3 on March 1, 1995
J Clin Invest. 1995;95(3):964–972. https://doi.org/10.1172/JCI117805.
© 1995 The American Society for Clinical Investigation
Published March 1, 1995 - Version history
View PDF
Abstract

Because it has been difficult to identify and separate malignant cells in human lymphoid malignancies, we have developed a flow cytometry-based fluorescent in situ hybridization (FISH) technique using immunoglobulin (Ig) heavy chain variable region (VH) gene probes. After obtaining the specific VH gene sequence expressed by the multiple myeloma IM-9 cell line and the malignant cells in five multiple myeloma patients, sense and antisense biotinylated single-stranded RNA probes were prepared by transcription from the malignant clone's VH DNA sequences. The cells from the IM-9 cell line and from the mononuclear bone marrow cells of multiple myeloma patients were fixed, hybridized with the above biotinylated RNA probes, incubated with streptavidin-phycoerythrin, and analyzed by FACS analysis. The myeloma cells stained positive with their own specific antisense VH biotinylated RNa probes, whereas sense and irrelevant antisense biotinylated probes demonstrated only background staining. Dilutional concentrations of the IM-9 cell line with normal bone marrow cells were also accurately quantitated by this procedure. The application of this technique will allow a more accurate assessment of tumor burden in patients with multiple myeloma and should permit an accurate method of tumor cell purification for clinical as well as biological studies. Furthermore, this technological advance should be equally effective at identifying specific VH gene-expressing cells in other lymphoid malignancies, as well as in nonmalignant B cell disorders.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 964
page 964
icon of scanned page 965
page 965
icon of scanned page 966
page 966
icon of scanned page 967
page 967
icon of scanned page 968
page 968
icon of scanned page 969
page 969
icon of scanned page 970
page 970
icon of scanned page 971
page 971
icon of scanned page 972
page 972
Version history
  • Version 1 (March 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts