Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117795

Abnormal contractile properties of muscle fibers expressing beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy.

E B Lankford, N D Epstein, L Fananapazir, and H L Sweeney

Cardiovascular Section, Hospital of the University of Pennsylvania, Philadelphia 19104-4283.

Find articles by Lankford, E. in: PubMed | Google Scholar

Cardiovascular Section, Hospital of the University of Pennsylvania, Philadelphia 19104-4283.

Find articles by Epstein, N. in: PubMed | Google Scholar

Cardiovascular Section, Hospital of the University of Pennsylvania, Philadelphia 19104-4283.

Find articles by Fananapazir, L. in: PubMed | Google Scholar

Cardiovascular Section, Hospital of the University of Pennsylvania, Philadelphia 19104-4283.

Find articles by Sweeney, H. in: PubMed | Google Scholar

Published March 1, 1995 - More info

Published in Volume 95, Issue 3 on March 1, 1995
J Clin Invest. 1995;95(3):1409–1414. https://doi.org/10.1172/JCI117795.
© 1995 The American Society for Clinical Investigation
Published March 1, 1995 - Version history
View PDF
Abstract

Missense mutations in the beta-myosin heavy chain (beta-MHC) gene cause hypertrophic cardiomyopathy (HCM). As normal and mutant beta-MHCs are expressed in slow-twitch skeletal muscle of HCM patients, we compared the contractile properties of single slow-twitch muscle fibers from patients with three distinct beta-MHC gene mutations and normal controls. Fibers with the 741Gly-->Arg mutation (near the binding site of essential light chain) demonstrated decreased maximum velocity of shortening (39% of normal) and decreased isometric force generation (42% of normal). Fibers with the 403Arg-->Gln mutation (at the actin interface of myosin) showed lowered force/stiffness ratio (56% of normal) and depressed velocity of shortening (50% of normal). Both the 741Gly-->Arg and 403Arg-->Gln mutation-containing fibers displayed abnormal force-velocity relationships and reduced power output. Fibers with the 256Gly-->Glu mutation (end of ATP-binding pocket) had contractile properties that were indistinguishable from normal. Thus there is variability in the nature and extent of functional impairments in skeletal fibers containing different beta-MHC gene mutations, which may correlate with the severity and penetrance of the disease that results from each mutation. These functional alterations likely constitute the primary stimulus for the cardiac hypertrophy that is characteristic of this disease.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1409
page 1409
icon of scanned page 1410
page 1410
icon of scanned page 1411
page 1411
icon of scanned page 1412
page 1412
icon of scanned page 1413
page 1413
icon of scanned page 1414
page 1414
Version history
  • Version 1 (March 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts