Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117782

Epstein-Barr virus-induced autoimmune responses. II. Immunoglobulin G autoantibodies to mimicking and nonmimicking epitopes. Presence in autoimmune disease.

J H Vaughan, M D Nguyen, J R Valbracht, K Patrick, and G H Rhodes

Department of Medicine, University of California, San Diego, La Jolla 92093-0663.

Find articles by Vaughan, J. in: PubMed | Google Scholar

Department of Medicine, University of California, San Diego, La Jolla 92093-0663.

Find articles by Nguyen, M. in: PubMed | Google Scholar

Department of Medicine, University of California, San Diego, La Jolla 92093-0663.

Find articles by Valbracht, J. in: PubMed | Google Scholar

Department of Medicine, University of California, San Diego, La Jolla 92093-0663.

Find articles by Patrick, K. in: PubMed | Google Scholar

Department of Medicine, University of California, San Diego, La Jolla 92093-0663.

Find articles by Rhodes, G. in: PubMed | Google Scholar

Published March 1, 1995 - More info

Published in Volume 95, Issue 3 on March 1, 1995
J Clin Invest. 1995;95(3):1316–1327. https://doi.org/10.1172/JCI117782.
© 1995 The American Society for Clinical Investigation
Published March 1, 1995 - Version history
View PDF
Abstract

During infectious mononucleosis, IgM autoantibodies are generated to a protein, p542, which contains a glycine-rich 28-mer epitope cross-reactive with the Epstein-Barr nuclear antigen-1 through Epstein-Barr nuclear antigen-1's glycine/alanine repeat. In normal individuals it is uncommon to find IgG anti-p542, but among patients with progressive systemic sclerosis, systemic lupus erythematosus, and ulcerative colitis high IgG anti-p542 (> 3 SD above the mean of normal 20-50 yr controls) occurred frequently. Lesser elevations occurred in Sjögren's syndrome, rheumatoid arthritis, ankylosing spondylitis, and Crohn's disease, but none with chronic hepatitis B infection. The reactive epitopes on p542 were mapped with deletion mutants, which indicated that the glycine-rich 28-mer was the major antigenic determinant, with lesser antibody responses to other epitopes. We conclude that normally there is an inability to generate IgG autoantibodies to the cross-reactive (mimicking) epitope of the p542 host protein, but that this inability is overcome in a proportion of patients with autoimmune disease. We conclude also that non-cross-reactive autoepitopes exist on p542 protein, to which IgG autoantibodies can commonly be formed in autoimmune disorders. The mechanisms responsible for the latter must involve different mechanisms than those responsible for autoantibodies to the mimicking epitope.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1316
page 1316
icon of scanned page 1317
page 1317
icon of scanned page 1318
page 1318
icon of scanned page 1319
page 1319
icon of scanned page 1320
page 1320
icon of scanned page 1321
page 1321
icon of scanned page 1322
page 1322
icon of scanned page 1323
page 1323
icon of scanned page 1324
page 1324
icon of scanned page 1325
page 1325
icon of scanned page 1326
page 1326
icon of scanned page 1327
page 1327
Version history
  • Version 1 (March 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts