Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117746

Effect of alpha-tocopherol on restenosis after angioplasty in a model of experimental atherosclerosis.

A M Lafont, Y C Chai, J F Cornhill, P L Whitlow, P H Howe, and G M Chisolm

Department of Cell Biology, Cleveland Clinic Foundation, Ohio 44195.

Find articles by Lafont, A. in: PubMed | Google Scholar

Department of Cell Biology, Cleveland Clinic Foundation, Ohio 44195.

Find articles by Chai, Y. in: PubMed | Google Scholar

Department of Cell Biology, Cleveland Clinic Foundation, Ohio 44195.

Find articles by Cornhill, J. in: PubMed | Google Scholar

Department of Cell Biology, Cleveland Clinic Foundation, Ohio 44195.

Find articles by Whitlow, P. in: PubMed | Google Scholar

Department of Cell Biology, Cleveland Clinic Foundation, Ohio 44195.

Find articles by Howe, P. in: PubMed | Google Scholar

Department of Cell Biology, Cleveland Clinic Foundation, Ohio 44195.

Find articles by Chisolm, G. in: PubMed | Google Scholar

Published March 1, 1995 - More info

Published in Volume 95, Issue 3 on March 1, 1995
J Clin Invest. 1995;95(3):1018–1025. https://doi.org/10.1172/JCI117746.
© 1995 The American Society for Clinical Investigation
Published March 1, 1995 - Version history
View PDF
Abstract

The ability of alpha-tocopherol to reduce restenosis after angioplasty was tested in a rabbit model in which angioplasty was performed on established atherosclerotic lesions. Lesions induced by 4 wk of cholesterol feeding after focal desiccation of femoral arteries were balloon dilated. 3 wk after angioplasty, angiographically determined minimum luminal diameters were less in the untreated group (0.80 +/- 0.51 mm) than in the group treated with oral alpha-tocopherol beginning 19 d before angioplasty (1.38 +/- 0.29 mm; P < 0.01). The cross-sectional area of the intima-media was greater in the untreated group (1.18 +/- 0.48 mm2) than in the alpha-tocopherol group (0.62 +/- 0.25 mm2, P < 0.0001). These differences were not due to vasoconstriction or altered plasma cholesterol. Alpha-tocopherol thus reduced restenosis after angioplasty in this model. In rabbit vascular smooth muscle cells, oxidized low density lipoprotein stimulated DNA synthesis. Alpha-tocopherol treatment inhibited DNA synthesis stimulated by oxidized low density lipoprotein, but not by serum. The findings are consistent with the hypothesis that oxidized lipids can stimulate hyperplasia and that antioxidants may limit hyperplasia by inhibiting either the oxidation or the proliferative effects of oxidants on cells.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1018
page 1018
icon of scanned page 1019
page 1019
icon of scanned page 1020
page 1020
icon of scanned page 1021
page 1021
icon of scanned page 1022
page 1022
icon of scanned page 1023
page 1023
icon of scanned page 1024
page 1024
icon of scanned page 1025
page 1025
Version history
  • Version 1 (March 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts