Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117722

Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter.

B L Shneider, P A Dawson, D M Christie, W Hardikar, M H Wong, and F J Suchy

Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520.

Find articles by Shneider, B. in: PubMed | Google Scholar

Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520.

Find articles by Dawson, P. in: PubMed | Google Scholar

Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520.

Find articles by Christie, D. in: PubMed | Google Scholar

Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520.

Find articles by Hardikar, W. in: PubMed | Google Scholar

Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520.

Find articles by Wong, M. in: PubMed | Google Scholar

Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520.

Find articles by Suchy, F. in: PubMed | Google Scholar

Published February 1, 1995 - More info

Published in Volume 95, Issue 2 on February 1, 1995
J Clin Invest. 1995;95(2):745–754. https://doi.org/10.1172/JCI117722.
© 1995 The American Society for Clinical Investigation
Published February 1, 1995 - Version history
View PDF
Abstract

Sodium-dependent bile acid transport in the rat ileum is abruptly expressed at weaning. Degenerate oligonucleotides, based on amino acid sequence identities between the rat liver and hamster ileal transporters, were used to amplify a rat ileal probe. A 1.2-kb cDNA clone, which contains the full coding region (348 amino acids, 38 kD), was isolated by hybridization screening. In vitro translation yielded a 38-kD protein which glycosylated to 48 kD. Sodium-dependent uptake of taurocholate was observed in oocytes injected with cRNA. Northern blot analysis revealed a 5.0-kb mRNA in ileum, kidney, and cecum. A 48-kD protein was detected in ileal brush border membranes and localized to the apical border of villus ileal enterocytes. mRNA and protein expression, which were negligible before weaning, increased dramatically at weaning. Nuclear transcription rates for the transporter increased 15-fold between postnatal days 7 and 28. The apparent molecular weight of the transporter also increased between days 19 and 28. In summary, the developmental regulation of the rat ileal sodium-dependent bile acid cotransporter is characterized by transcriptionally regulated increases in mRNA and protein levels at the time of weaning with changes in apparent molecular weight of the protein after weaning.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 745
page 745
icon of scanned page 746
page 746
icon of scanned page 747
page 747
icon of scanned page 748
page 748
icon of scanned page 749
page 749
icon of scanned page 750
page 750
icon of scanned page 751
page 751
icon of scanned page 752
page 752
icon of scanned page 753
page 753
icon of scanned page 754
page 754
Version history
  • Version 1 (February 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts