Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport
Kentaro Ozawa, … , Satoshi Ogawa, Tohru Ohshima
Kentaro Ozawa, … , Satoshi Ogawa, Tohru Ohshima
Published July 1, 2001
Citation Information: J Clin Invest. 2001;108(1):41-50. https://doi.org/10.1172/JCI11772.
View: Text | PDF
Article

Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport

  • Text
  • PDF
Abstract

Expression of angiogenic factors such as VEGF under conditions of hypoxia or other kinds of cell stress contributes to neovascularization during wound healing. The inducible endoplasmic reticulum chaperone oxygen-regulated protein 150 (ORP150) is expressed in human wounds along with VEGF. Colocalization of these two molecules was observed in macrophages in the neovasculature, suggesting a role of ORP150 in the promotion of angiogenesis. Local administration of ORP150 sense adenovirus to wounds of diabetic mice, a treatment that efficiently targeted this gene product to the macrophages of wound beds, increased VEGF antigen in wounds and accelerated repair and neovascularization. In cultured human macrophages, inhibition of ORP150 expression caused retention of VEGF antigen within the endoplasmic reticulum (ER), while overexpression of ORP150 promoted the secretion of VEGF into hypoxic culture supernatants. Taken together, these data suggest an important role for ORP150 in the setting of impaired wound repair and identify a key, inducible chaperone-like molecule in the ER. This novel facet of the angiogenic response may be amenable to therapeutic manipulation.

Authors

Kentaro Ozawa, Toshikazu Kondo, Osamu Hori, Yasuko Kitao, David M. Stern, Wolfgang Eisenmenger, Satoshi Ogawa, Tohru Ohshima

×

Figure 6

Options: View larger image (or click on image) Download as PowerPoint
ORP150 content in wounds after infection with recombinant adenoviruses. ...
ORP150 content in wounds after infection with recombinant adenoviruses. A secondary intention wound model (6 mm in diameter) was introduced in C57BL/6J-m+/+Leprdb homozygous mice (db/db) (a–e) and C57BL/6J mice (wild-type) (f–j). Two days after the injury, recombinant adenovirus (5 × 107 pfu each) was administered as described above. Photographs of the wounds are shown on days 3 and 9 after induction of the wounds (a and f). At the indicated time points, wounds were sampled (10 mm diameter), and protein extracts were prepared from the wound tissue and subjected to Western blot analysis with anti-ORP150 Ab. A typical example of four repeated experiments is shown (b and g). Densitometric analysis of multiple Western blots was performed in (c) (db/db mice) and (h) (wild-type mice). *P < 0.01 by multiple contrast analysis. (d and i) Angiogenesis was estimated semiquantitatively 7 days after the injury based on the area occupied by PECAM-1 immunoreactive tissue. n = 6; mean ± SD. **P < 0.01 by nonpaired t test. (e and j) Tissue VEGF content was measured in wound tissue. n = 6; mean ± SD. *P < 0.01 by multiple contrast analysis. Statistics were performed in comparison with animals infected with AxCALacZ (open bars) in each panel.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts