Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii. Implications for the target of macrolide antibiotics.
C J Beckers, … , Y Cao, K A Joiner
C J Beckers, … , Y Cao, K A Joiner
Published January 1, 1995
Citation Information: J Clin Invest. 1995;95(1):367-376. https://doi.org/10.1172/JCI117665.
View: Text | PDF
Research Article

Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii. Implications for the target of macrolide antibiotics.

  • Text
  • PDF
Abstract

We investigated potential targets for the activity of protein synthesis inhibitors against the protozoan parasite Toxoplasma gondii. Although nanomolar concentrations of azithromycin and clindamycin prevent replication of T. gondii in both cell culture and in vivo assays, no inhibition of protein labeling was observed in either extracellular or intracellular parasites treated with up to 100 microM drug for up to 24 h. Quantitative analysis of > 300 individual spots on two-dimensional gels revealed no proteins selectively depleted by 100 microM azithromycin. In contrast, cycloheximide inhibited protein synthesis in a dose-dependent manner. Nucleotide sequence analysis of the peptidyl transferase region from genes encoding the large subunit of the parasite's ribosomal RNA predict that the cytoplasmic ribosomes of T. gondii, like other eukaryotic ribosomes, should be resistant to macrolide antibiotics. Combining cycloheximide treatment with two-dimensional gel analysis revealed a small subset of parasite proteins likely to be synthesized on mitochondrial ribosomes. Synthesis of these proteins was inhibited by 100 microM tetracycline, but not by 100 microM azithromycin or clindamycin. Ribosomal DNA sequences believed to be derived from the T. gondii mitochondrial genome predict macrolide/lincosamide resistance. PCR amplification of total T. gondii DNA identified an additional class of prokaryotic-type ribosomal genes, similar to the plastid-like ribosomal genes of the Plasmodium falciparum. Ribosomes encoded by these genes are predicted to be sensitive to the lincosamide/macrolide class of antibiotics, and may serve as the functional target for azithromycin, clindamycin, and other protein synthesis inhibitors in Toxoplasma and related parasites.

Authors

C J Beckers, D S Roos, R G Donald, B J Luft, J C Schwab, Y Cao, K A Joiner

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 190 24
PDF 54 13
Figure 0 4
Scanned page 345 1
Citation downloads 50 0
Totals 639 42
Total Views 681
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts