Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Virus-induced airway hyperresponsiveness in guinea pigs is related to a deficiency in nitric oxide.
G Folkerts, … , H J van der Linde, F P Nijkamp
G Folkerts, … , H J van der Linde, F P Nijkamp
Published January 1, 1995
Citation Information: J Clin Invest. 1995;95(1):26-30. https://doi.org/10.1172/JCI117649.
View: Text | PDF
Research Article

Virus-induced airway hyperresponsiveness in guinea pigs is related to a deficiency in nitric oxide.

  • Text
  • PDF
Abstract

Intratracheal inoculation of parainfluenza type 3 virus to guinea pigs induces a marked increase in airway responsiveness in vivo and in vitro. In spontaneously breathing anesthetized guinea pigs inhalation of an aerosol containing the nitric oxide (NO) precursor L-arginine (2.0 mM) completely prevented the virus-induced airway hyperresponsiveness to histamine. In addition, perfusion of L-arginine (200 microM) or the direct NO-donor S-nitroso-N-acetyl-penicillamine (SNAP, 1 microM) through the lumen of tracheal tubes from infected animals prevented the increase in airway responsiveness to histamine or the cholinoceptor agonist methacholine. The NO synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, 120 microM) did not further increase the virus-induced airway hyperresponsiveness. In additional experiments, NO was measured with an Iso-NO nitric oxide meter and sensor. Stimulation of control tissues in vitro with histamine (10(-3) M) resulted in a contraction with a simultaneous release of NO (44.5 +/- 5.4 nM). The release of NO was markedly reduced by 75% (P < 0.01, 11.4 +/- 3.1 nM) in tracheas from virus-infected animals that demonstrated enhanced contractile responses. Preincubation of tissues from virus-treated guinea pigs with L-arginine (200 microM) completely prevented the enhanced contraction and simultaneously returned the NO production to control values (51.2 +/- 3.4 nM). An NO deficiency might be causally related to the development of airway hyperresponsiveness after a viral respiratory infection.

Authors

G Folkerts, H J van der Linde, F P Nijkamp

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 132 10
PDF 47 16
Scanned page 153 7
Citation downloads 51 0
Totals 383 33
Total Views 416
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts