The plasma cholesteryl ester transfer protein (CETP) mediates the exchange of HDL cholesteryl esters with triglycerides of other lipoproteins. Subsequent lipolysis of the triglyceride-enriched HDL by hepatic lipase leads to reductions of HDL size and apoA-I content. To investigate a possible modulation of the effects of CETP by apoA-II, human CETP transgenic mice were cross-bred with transgenic mice expressing human apoA-II and, in some cases, human apoA-I and apoC-III (with human-like HDL and hypertriglyceridemia). CETP expression resulted in reductions of HDL and increases in VLDL cholesteryl ester in mice expressing human apoA-II, alone or in combination with apoA-I and apoC-III, indicating that apoA-II does not inhibit the cholesteryl ester transfer activity of CETP. However, CETP expression resulted in more prominent increases in HDL triglyceride in mice expressing both apoA-II and CETP, especially in CETP/apoA-II/apoAI-CIII transgenic mice. CETP expression caused dramatic reductions in HDL size and apoA-I content in apoAI-CIII transgenic mice, but not in apoA-II/AI-CIII transgenic mice. HDL prepared from mice of various genotypes showed inhibition of emulsion-based hepatic lipase activity in proportion to the apoA-II/apoA-I ratio of HDL. The presence of human apoA-II also inhibited mouse plasma hepatic lipase activity on HDL triglyceride. Thus, apoA-II does not inhibit the lipid transfer activity of CETP in vivo. However, coexpression of apoA-II with CETP results in HDL particles that are more triglyceride enriched and resistant to reductions in size and apoA-I content, reflecting inhibition of hepatic lipase by apoA-II. The inhibition of HDL remodeling by apoA-II could explain the relatively constant levels of HDL containing both apoA-I and apoA-II in human populations.


S Zhong, I J Goldberg, C Bruce, E Rubin, J L Breslow, A Tall


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.