Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus.
D E Kelley, J A Simoneau
D E Kelley, J A Simoneau
Published December 1, 1994
Citation Information: J Clin Invest. 1994;94(6):2349-2356. https://doi.org/10.1172/JCI117600.
View: Text | PDF
Research Article

Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus.

  • Text
  • PDF
Abstract

This study was undertaken to assess utilization of FFA by skeletal muscle in patients with non-insulin-dependent diabetes mellitus (NIDDM). 11 NIDDM and 9 nondiabetic subjects were studied using leg balance methods to measure the fractional extraction of [3H]oleate. Limb indirect calorimetry was used to estimate RQ. Percutaneous muscle biopsy samples of vastus lateralis were analyzed for muscle fiber type distribution, capillary density, and metabolic potential as reflected by measurements of the activity of seven muscle enzyme markers of glycolytic and aerobic-oxidative pathways. During postabsorptive conditions, fractional extraction of oleate across the leg was lower in NIDDM subjects (0.31 +/- 0.08 vs. 0.43 +/- 0.10, P < 0.01), and there was reduced oleate uptake across the leg (66 +/- 8 vs. 82 +/- 13 nmol/min, P < 0.01). Postabsorptive leg RQ was increased in NIDDM (0.85 +/- 0.03 vs. 0.77 +/- 0.02, P < 0.01), and rates of lipid oxidation by skeletal muscle were lower while glucose oxidation was increased (P < 0.05). In subjects with NIDDM, proportions of type I, IIa, and IIb fibers were 37 +/- 2, 37 +/- 6, and 26 +/- 5%, respectively, which did not differ from nondiabetics; and capillary density, glycolytic, and aerobic-oxidative potentials were similar. During 6 h after ingestion of a mixed meal, arterial FFA remained greater in NIDDM subjects. Therefore, despite persistent reduced fractional extraction of oleate across the leg in NIDDM (0.34 +/- 0.04 vs. 0.38 +/- 0.03, P < 0.05), rates of oleate uptake across the leg were greater in NIDDM (54 +/- 7 vs. 45 +/- 8 nmol/min, P < 0.01). In summary, during postabsorptive conditions there is reduced utilization of FFA by muscle, while during postprandial conditions there is impaired suppression of FFA uptake across the leg in NIDDM. During both fasting and postprandial conditions, NIDDM subjects have reduced rates of lipid oxidation by muscle.

Authors

D E Kelley, J A Simoneau

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 526 51
PDF 115 38
Scanned page 422 7
Citation downloads 72 0
Totals 1,135 96
Total Views 1,231
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts