Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117562

Microvascular perfusion is impaired in a rat model of normotensive sepsis.

C Lam, K Tyml, C Martin, and W Sibbald

A. C. Burton Vascular Biology Laboratory, Victoria Hospital Research Institute, London, Canada.

Find articles by Lam, C. in: PubMed | Google Scholar

A. C. Burton Vascular Biology Laboratory, Victoria Hospital Research Institute, London, Canada.

Find articles by Tyml, K. in: PubMed | Google Scholar

A. C. Burton Vascular Biology Laboratory, Victoria Hospital Research Institute, London, Canada.

Find articles by Martin, C. in: PubMed | Google Scholar

A. C. Burton Vascular Biology Laboratory, Victoria Hospital Research Institute, London, Canada.

Find articles by Sibbald, W. in: PubMed | Google Scholar

Published November 1, 1994 - More info

Published in Volume 94, Issue 5 on November 1, 1994
J Clin Invest. 1994;94(5):2077–2083. https://doi.org/10.1172/JCI117562.
© 1994 The American Society for Clinical Investigation
Published November 1, 1994 - Version history
View PDF
Abstract

We hypothesized that normotensive sepsis affects the ability of the microcirculation to appropriately regulate microregional red blood cell (RBC) flux. An extensor digitorum longus muscle preparation for intravital study was used to compare the distribution of RBC flux and the functional hyperemic response in SHAM rats and rats made septic by cecal ligation and perforation (CLP). Using intravital microscopy, we found that sepsis was associated with a 36% reduction in perfused capillary density (from 35.3 +/- 1.5 to 22.5 +/- 1.0 capillaries/mm of test line) and a 265% increase in stopped-flow capillaries (from 0.9 +/- 0.2 to 3.3 +/- 0.4 capillaries/mm); the spatial distribution of perfused capillaries was also 72% more heterogeneous. Mean intercapillary distance (ICD) increased 30% (from 25.7 +/- 0.8 to 33.5 +/- 1.6 microns), and the proportion of capillary pairs with intercapillary distances > 33.8 microns (the 75th percentile of ICDSHAM) was greater with sepsis. Mean capillary RBC velocity increased 17% in CLP rats (391 vs 333 microns/s). Laser Doppler flowmetry was used to assess the functional hyperemic response of the extensor digitorum longus muscle before and after a period of maximal twitch contraction designed to increase oxygen demand. RBC flux was 36% lower in the CLP rats at rest. After contraction, RBC flux increased in both SHAM and CLP rats; however, the relative increase was less in the CLP group. We concluded that sepsis affects the ability of the skeletal muscle microcirculation to appropriately distribute RBC flux and to respond to increases in oxygen need.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2077
page 2077
icon of scanned page 2078
page 2078
icon of scanned page 2079
page 2079
icon of scanned page 2080
page 2080
icon of scanned page 2081
page 2081
icon of scanned page 2082
page 2082
icon of scanned page 2083
page 2083
Version history
  • Version 1 (November 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts