Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editor's notes
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Airway epithelial cell expression of interleukin-6 in transgenic mice. Uncoupling of airway inflammation and bronchial hyperreactivity.
B F DiCosmo, … , J A Whitsett, R A Flavell
B F DiCosmo, … , J A Whitsett, R A Flavell
Published November 1, 1994
Citation Information: J Clin Invest. 1994;94(5):2028-2035. https://doi.org/10.1172/JCI117556.
View: Text | PDF
Research Article

Airway epithelial cell expression of interleukin-6 in transgenic mice. Uncoupling of airway inflammation and bronchial hyperreactivity.

  • Text
  • PDF
Abstract

We produced transgenic mice which overexpress human IL-6 in the airway epithelial cells. Transgenic mice develop a mononuclear cell infiltrate adjacent to large and mid-sized airways. Immunohistochemistry reveals these cells to be predominantly CD4+ cells, MHC class II+ cells, and B220+ cells. Transgenic mice and nontransgenic mice had similar baseline respiratory system resistance (0.47 +/- 0.06 vs 0.43 +/- 0.04 cmH2O/ml per s at 9 wk of age, P = NS and 0.45 +/- 0.07 vs 0.43 +/- 0.09 cmH2O/ml per s at 17 wk of age, P = NS). Transgenic mice, however, required a significantly higher log dose of methacholine to produce a 100% increase in respiratory system resistance as compared with non-transgenic littermates (1.34 +/- 0.24 vs 0.34 +/- 0.05 mg/ml, P < or = 0.01). We conclude that the expression of human IL-6 in the airways of transgenic mice results in a CD4+, MHC class II+, B220+ lymphocytic infiltrate surrounding large and mid-sized airways that does not alter basal respiratory resistance, but does diminish airway reactivity to methacholine. These findings demonstrate an uncoupling of IL-6-induced airway lymphocytic inflammation and airway hyperresponsiveness and suggest that some forms of airway inflammation may serve to restore altered airway physiology.

Authors

B F DiCosmo, G P Geba, D Picarella, J A Elias, J A Rankin, B R Stripp, J A Whitsett, R A Flavell

×

Usage data is cumulative from June 2022 through June 2023.

Usage JCI PMC
Text version 372 0
PDF 34 23
Scanned page 172 8
Citation downloads 24 0
Totals 602 31
Total Views 633

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts