Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Block of AIDS-Kaposi's sarcoma (KS) cell growth, angiogenesis, and lesion formation in nude mice by antisense oligonucleotide targeting basic fibroblast growth factor. A novel strategy for the therapy of KS.
B Ensoli, … , G Zon, R C Gallo
B Ensoli, … , G Zon, R C Gallo
Published November 1, 1994
Citation Information: J Clin Invest. 1994;94(5):1736-1746. https://doi.org/10.1172/JCI117521.
View: Text | PDF
Research Article

Block of AIDS-Kaposi's sarcoma (KS) cell growth, angiogenesis, and lesion formation in nude mice by antisense oligonucleotide targeting basic fibroblast growth factor. A novel strategy for the therapy of KS.

  • Text
  • PDF
Abstract

Kaposi's sarcoma (KS) is the most frequent tumor of HIV-1-infected individuals (AIDS-KS). Typical features of KS are proliferating spindle-shaped cells, considered to be the tumor cells of KS, and endothelial cells forming blood vessels. Basic fibroblast growth factor (bFGF), a potent angiogenic factor, is highly expressed by KS spindle cells in vivo and after injection in nude mice it induces vascular lesions closely resembling early KS in humans. Similar lesions are induced by inoculating nude mice with cultured spindle cells from AIDS-KS lesions (AIDS-KS cells) which produce and release bFGF. Here we show that phosphorothioate antisense (AS) oligonucleotides directed against bFGF mRNA (ASbFGF) inhibit both the growth of AIDS-KS cells derived from different patients and the angiogenic activity associated with these cells, including the induction of KS-like lesions in nude mice. These effects are due to the block of the production of bFGF which is required by AIDS-KS cells to enter the cell cycle and which, after release, mediates angiogenesis. The effects of ASbFGF are specific, dose dependent, achieved at low (0.1-1 microM), nontoxic, oligomer concentrations, and are reversed by the addition of bFGF to the cells, suggesting that ASbFGF oligomers are promising drug candidates for KS therapy.

Authors

B Ensoli, P Markham, V Kao, G Barillari, V Fiorelli, R Gendelman, M Raffeld, G Zon, R C Gallo

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 494 8
PDF 72 11
Figure 0 4
Scanned page 499 0
Citation downloads 66 0
Totals 1,131 23
Total Views 1,154
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts