Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments.
M Basta, M C Dalakas
M Basta, M C Dalakas
Published November 1, 1994
Citation Information: J Clin Invest. 1994;94(5):1729-1735. https://doi.org/10.1172/JCI117520.
View: Text | PDF
Research Article

High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments.

  • Text
  • PDF
Abstract

In patients with dermatomyositis (DM) the earliest lesion is microvasculopathy mediated by deposition of C5b-C9 membranolytic attack complex (MAC) on intramuscular capillaries. This leads sequentially to muscle ischemia, necrosis of muscle fibers, and muscle weakness. High-dose intravenous immunoglobulin (IVIG), which can modulate complement-dependent tissue damage in animal models, has been shown to be effective in the treatment of patients with DM. We used an in vitro C3 uptake assay to examine 55 coded sera from 13 patients with DM and 5 patients with other non-complement-mediated neuromuscular diseases, before and after treatment with IVIG or placebo. Patients with active DM had a significantly higher baseline C3 uptake compared with the others (geometric mean 12,190 vs 3,090 cpm). Post-IVIG but not post-placebo sera inhibited the C3 uptake, without depleting the complement components, by 70.6-93.4%. The maximum inhibition of C3 uptake occurred within hours after IVIG infusion, started to rebound 2 d later, and reached pretreatment levels after 30 d. The serum levels of SC5b-9 complex production were high at baseline but normalized after IVIG therapy. Repeat biopsies from muscles of improved patients showed disappearance of C3b NEO and MAC deposits from the endomysial capillaries and restoration of the capillary network. We conclude that IVIG exerts its beneficial clinical effect by intercepting the assembly and deposition of MAC on the endomysial capillaries through the formation of complexes between the infused immunoglobulins and C3b, thereby preventing the incorporation of activated C3 molecules into C5 convertase. These findings provide the first serological and in situ evidence that IVIG modulates complement attack in a human disease.

Authors

M Basta, M C Dalakas

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 496 71
PDF 115 57
Figure 0 1
Scanned page 322 0
Citation downloads 65 0
Totals 998 129
Total Views 1,127
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts