Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Tamoxifen blocks chloride channels. A possible mechanism for cataract formation.
J J Zhang, … , A E Trezise, C F Higgins
J J Zhang, … , A E Trezise, C F Higgins
Published October 1, 1994
Citation Information: J Clin Invest. 1994;94(4):1690-1697. https://doi.org/10.1172/JCI117514.
View: Text | PDF
Research Article

Tamoxifen blocks chloride channels. A possible mechanism for cataract formation.

  • Text
  • PDF
Abstract

Tamoxifen is an antiestrogen frequently used in the treatment of breast cancer and is currently being assessed as a prophylactic for those at high risk of developing tumors. We have found that tamoxifen and its derivatives are high-affinity blockers of specific chloride channels. This blockade appears to be independent of the interaction of tamoxifen with the estrogen receptor and therefore reflects an alternative cellular target. One of the clinical side effects of tamoxifen is impaired vision and cataract. Chloride channels in the lens of the eye were shown to be essential for maintaining normal lens hydration and transmittance. These channels were blocked by tamoxifen and, in organ culture, tamoxifen led to lens opacity associated with cataracts at clinically relevant concentrations. These data suggest a molecular mechanism by which tamoxifen can cause cataract formation and have implications for the clinical use of tamoxifen and related antiestrogens.

Authors

J J Zhang, T J Jacob, M A Valverde, S P Hardy, G M Mintenig, F V Sepúlveda, D R Gill, S C Hyde, A E Trezise, C F Higgins

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 289 22
PDF 74 14
Scanned page 338 6
Citation downloads 64 0
Totals 765 42
Total Views 807
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts