Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Gene transfer into the rat renal glomerulus via a mesangial cell vector: site-specific delivery, in situ amplification, and sustained expression of an exogenous gene in vivo.
M Kitamura, … , F Shimizu, L G Fine
M Kitamura, … , F Shimizu, L G Fine
Published August 1, 1994
Citation Information: J Clin Invest. 1994;94(2):497-505. https://doi.org/10.1172/JCI117361.
View: Text | PDF
Research Article

Gene transfer into the rat renal glomerulus via a mesangial cell vector: site-specific delivery, in situ amplification, and sustained expression of an exogenous gene in vivo.

  • Text
  • PDF
Abstract

To evaluate the pathophysiological function of specific molecules in the renal glomerulus, selective, sustained, and modifiable expression of such molecules will be required. Towards achieving this end, we devised a gene transfer system using the glomerular mesangial cell as a vector for gene delivery. A reporter gene which encodes bacterial beta-galactosidase was introduced into cultured rat mesangial cells, and the stable transfectants were transferred into the rat kidney via the renal artery, leading to selective entrapment within the glomeruli. In the normal kidney, the reporter cells populated into 57 +/- 13% of glomeruli site specifically, and the expression of beta-galactosidase was sustained for 4 wk and declined thereafter. Within the glomerulus, some of the reporter cells remained in the glomerular capillaries, while others repopulated the mesangial area and, in part, extended their cytoplasmic processes toward the surrounding capillaries. When the cells were transferred into glomeruli subjected to transient mesangiolysis induced by monoclonal antibody 1-22-3, in situ expression of beta-galactosidase was amplified 7-12-fold, and the enhanced level of expression continued for up to 8 wk. The mesangial cell vector system thus achieves site-specific delivery of an exogenous gene into the glomerulus and is amenable to in situ amplification and sustained expression by preconditioning of the target site.

Authors

M Kitamura, S Taylor, R Unwin, S Burton, F Shimizu, L G Fine

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts