Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117352

Pseudo-acylceramide with linoleic acid produces selective recovery of diminished cutaneous barrier function in essential fatty acid-deficient rats and has an inhibitory effect on epidermal hyperplasia.

G Imokawa, Y Yada, K Higuchi, M Okuda, Y Ohashi, and A Kawamata

Tochigi Research Laboratories, Kao Corporation, Japan.

Find articles by Imokawa, G. in: JCI | PubMed | Google Scholar

Tochigi Research Laboratories, Kao Corporation, Japan.

Find articles by Yada, Y. in: JCI | PubMed | Google Scholar

Tochigi Research Laboratories, Kao Corporation, Japan.

Find articles by Higuchi, K. in: JCI | PubMed | Google Scholar

Tochigi Research Laboratories, Kao Corporation, Japan.

Find articles by Okuda, M. in: JCI | PubMed | Google Scholar

Tochigi Research Laboratories, Kao Corporation, Japan.

Find articles by Ohashi, Y. in: JCI | PubMed | Google Scholar

Tochigi Research Laboratories, Kao Corporation, Japan.

Find articles by Kawamata, A. in: JCI | PubMed | Google Scholar

Published July 1, 1994 - More info

Published in Volume 94, Issue 1 on July 1, 1994
J Clin Invest. 1994;94(1):89–96. https://doi.org/10.1172/JCI117352.
© 1994 The American Society for Clinical Investigation
Published July 1, 1994 - Version history
View PDF
Abstract

Pseudo-acylceramides with different acyl properties were investigated for their capacity to restore diminished barrier function in essential fatty acid-deficient rats. Daily topical applications of synthetic pseudo-acylceramides containing ester-linked linoleic acid caused a dose-dependent, significant reduction of transepidermal water loss (TEWL). Both other pseudo-acylceramides with ester-linked oleic acid or saturated alkyl chains and ordinary ceramides exhibited a poor effect on recovery of TEWL. Furthermore, pseudoceramide containing ether-linked linoleic acid, which is biologically inactive in terms of degradation by hydrolytic enzymes, also induced a significant and similar increase in the barrier function. This restoration of barrier function by pseudo-acylceramides with linoleic acid was accompanied by suppressed DNA synthesis in the EFAD rat epidermis. In UVB-irradiated guinea pig skin, topical applications of the pseudo-acylceramides with linoleic acid immediately after the exposure significantly reduced epidermal hyperplasia, secondary to markedly diminished barrier disruption, whereas linoleic acid itself did not. A comparison of both the anti-hyperplasia and the barrier recovery effects in the series of pseudo-ceramide derivatives examined revealed that the suppressive effect on the induced epidermal hyperplasia was paralleled by the recovery of the barrier defect in EFAD rats. These findings directly suggest that acylceramide with an ester-linked linoleic acid has an essential role in the epidermal permeability barrier.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 89
page 89
icon of scanned page 90
page 90
icon of scanned page 91
page 91
icon of scanned page 92
page 92
icon of scanned page 93
page 93
icon of scanned page 94
page 94
icon of scanned page 95
page 95
icon of scanned page 96
page 96
Version history
  • Version 1 (July 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts