Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117351

Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2 in chronic wounds.

U K Saarialho-Kere, A P Pentland, H Birkedal-Hansen, W C Parks, and H G Welgus

Division of Dermatology, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110.

Find articles by Saarialho-Kere, U. in: JCI | PubMed | Google Scholar

Division of Dermatology, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110.

Find articles by Pentland, A. in: JCI | PubMed | Google Scholar

Division of Dermatology, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110.

Find articles by Birkedal-Hansen, H. in: JCI | PubMed | Google Scholar

Division of Dermatology, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110.

Find articles by Parks, W. in: JCI | PubMed | Google Scholar

Division of Dermatology, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110.

Find articles by Welgus, H. in: JCI | PubMed | Google Scholar

Published July 1, 1994 - More info

Published in Volume 94, Issue 1 on July 1, 1994
J Clin Invest. 1994;94(1):79–88. https://doi.org/10.1172/JCI117351.
© 1994 The American Society for Clinical Investigation
Published July 1, 1994 - Version history
View PDF
Abstract

Wound repair involves cell migration and tissue remodeling, and these ordered and regulated processes are facilitated by matrix-degrading proteases. We reported that interstitial collagenase is invariantly expressed by basal keratinocytes at the migrating front of healing epidermis (Saarialho-Kere, U. K., E. S. Chang, H. G. Welgus, and W. C. Parks, 1992. J. Clin. Invest. 90:1952-1957). Because of the limited substrate specificity of collagenase, principally for interstitial fibrillar collagens, other enzymes must also be produced in the wound environment to effectively restructure tissues with a complex matrix composition. Stromelysins-1 and -2 are closely related, yet distinct metalloproteinases, and both can degrade many noncollagenous connective tissue macromolecules. Using in situ hybridization and immunohistochemistry, we found that both stromelysins are produced by distinct populations of keratinocytes in a variety of chronic ulcers. Stromelysin-1 mRNA and protein were detected in basal keratinocytes adjacent to but distal from the wound edge in what probably represents the sites of proliferating epidermis. In contrast, stromelysin-2 mRNA was seen only in basal keratinocytes at the migrating front, in the same epidermal cell population that expresses collagenase. Stromelysin-1-producing keratinocytes resided on the basement membrane, whereas stromelysin-2-producing keratinocytes were in contact with the dermal matrix. Furthermore, stromelysin-1 expression was prominent in dermal fibroblasts, whereas no signal for stromelysin-2 was seen in any dermal cell. These findings demonstrate that stromelysins-1 and -2 are produced by different populations of basal keratinocytes in response to wounding and suggest that these two matrix metalloproteinases serve distinct roles in tissue repair.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 79
page 79
icon of scanned page 80
page 80
icon of scanned page 81
page 81
icon of scanned page 82
page 82
icon of scanned page 83
page 83
icon of scanned page 84
page 84
icon of scanned page 85
page 85
icon of scanned page 86
page 86
icon of scanned page 87
page 87
icon of scanned page 88
page 88
Version history
  • Version 1 (July 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts