TNF alpha seems to play an important role in the pathogenesis of adult respiratory distress syndrome. We studied the effect of TNF alpha on phospholipid synthesis by isolated type II pneumocytes and attempted to characterize the role of arachidonate metabolites and the influence of pentoxifylline on such an effect. Lung tissue obtained from both multiple organ donors (n = 14) and lung cancer patients (n = 11) was used for cell isolation. Surfactant synthesis was measured by the incorporation of D-[U-14C]glucose into phosphatidylcholine (PC). The basal PC synthesis was higher in the donor group than in the malignant group (3.44 +/- 0.19 vs 2.15 +/- 0.15 pmol/microgram protein x 120 min, P < 0.01), and, in the presence of 100 ng/ml of TNF alpha, the incorporation of labeled glucose into PC was reduced significantly in both donor (1.13 +/- 0.11 vs 3.44 +/- 0.19 pmol/microgram protein x 120 min, P < 0.01) and cancer (0.99 +/- 0.11 vs 2.15 +/- 0.15 pmol/microgram protein x 120 min, P < 0.01) groups. Indomethacin was able to completely block the cytokine-induced decrease in PC synthesis by pneumocytes from the malignant group and to attenuate the inhibitory effect of TNF alpha in those from donors, nordihydroguaiaretic acid having a similar effect. The TNF alpha effect can be blocked by pentoxifylline (100 micrograms/ml), a substance which can even succeed in reverting the basal secretory inhibition of cancer patients' pneumocytes to levels similar to those of the donor group. TNF alpha may contribute to the pathophysiology of adult respiratory distress syndrome by inhibiting the synthesis of surfactant. TNF alpha might be produced in lung tumors, resulting in chronic paracrine or systemic exposure of pneumocytes to low concentrations of the cytokine. The TNF alpha effect was not prevented completely by the blockage of the arachidonic acid metabolism, hence other mediators should also be implicated.
J Arias-Díaz, E Vara, C García, J L Balibrea
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 114 | 2 |
42 | 17 | |
Scanned page | 254 | 4 |
Citation downloads | 49 | 0 |
Totals | 459 | 23 |
Total Views | 482 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.