Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Na,K-ATPase in diabetic rat small intestine. Changes at protein and mRNA levels and role of glucagon.
K Barada, … , M Field, N Cortas
K Barada, … , M Field, N Cortas
Published June 1, 1994
Citation Information: J Clin Invest. 1994;93(6):2725-2731. https://doi.org/10.1172/JCI117287.
View: Text | PDF
Research Article

Na,K-ATPase in diabetic rat small intestine. Changes at protein and mRNA levels and role of glucagon.

  • Text
  • PDF
Abstract

Na,K-ATPase activity and isoform expression were measured in rat small intestinal mucosa taken from both normal and streptozocin-treated diabetic rats. Enzyme activity and abundance was 1.7-2.3-fold higher in rats diabetic for 2 wk than in controls. This was associated with 1.4-1.7-fold increases in small intestinal protein and DNA content. Ouabain inhibition curves of Na,K-ATPase were monophasic with Kis of 2.6 +/- 1.4 x 10(-4) and 2.0 +/- 1.2 x 10(-4) M for control and diabetic rats, respectively (NS). Northern blot analysis revealed a 2.5-fold increase in mRNA alpha 1 and a 3.4-fold increase in mRNA beta 1 in diabetic rats relative to controls. Two thirds of this increase occurred within 24h after injection of streptozocin. Immunoblots of intestinal enzyme preparations from diabetic and control rats indicated the presence of alpha 1 and beta 1 subunits but not of alpha 2 or alpha 3. Administration of glucagon (80 micrograms/kg) to normal rats daily for 14-16 d increased mRNA alpha 1 3.1-fold but did not increase mRNA beta 1 or enzyme activity. In experimental diabetes, alpha 1 and beta 1 isoforms of Na,K-ATPase are coordinately upregulated at both protein and mRNA levels, an effect which appears to be partially mediated by the associated hyperglucagonemia.

Authors

K Barada, C Okolo, M Field, N Cortas

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 110 3
PDF 53 6
Scanned page 277 5
Citation downloads 68 0
Totals 508 14
Total Views 522
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts