Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Exposure of the hydrophobic components of porcine lung surfactant to oxidant stress alters surface tension properties.
N Gilliard, … , T A Merritt, R G Spragg
N Gilliard, … , T A Merritt, R G Spragg
Published June 1, 1994
Citation Information: J Clin Invest. 1994;93(6):2608-2615. https://doi.org/10.1172/JCI117273.
View: Text | PDF
Research Article

Exposure of the hydrophobic components of porcine lung surfactant to oxidant stress alters surface tension properties.

  • Text
  • PDF
Abstract

We have tested the hypothesis that oxidation of lung surfactant results in loss of surface tension lowering function. Porcine lung surfactant was exposed to conditions known to cause lipid peroxidation (0.2 mM FeCl2 + 0.1 mM H2O2 or 5 microM CuCl2). Lipid peroxidation was verified by detection of conjugated dienes, thiobarbituric acid reactive substances, fluorescent products, hydroxy alkenals, and loss of unsaturated fatty acids. Exposed samples had significantly diminished surface tension lowering ability in vitro as measured in a bubble surfactometer. Samples exposed to FeCl2 + H2O2 had significantly diminished surface tension lowering ability in vivo as indicated by their reduced ability to improve lung compliance of surfactant-deficient fetal rabbits. Oxidation of phospholipid mixtures with surface tension lowering activity and containing unsaturated acyl groups resulted in partial loss of activity as determined in vitro. These results suggest that the effect of oxidants on lung surfactant function is due, in part, to effects on the phospholipid components and that acute pulmonary inflammation accompanied by oxygen radical production may result in surfactant lipid peroxidation and loss of surface tension lowering function.

Authors

N Gilliard, G P Heldt, J Loredo, H Gasser, H Redl, T A Merritt, R G Spragg

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts