Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

In situ glucose uptake and glucokinase activity of pancreatic islets in diabetic and obese rodents.
Y Liang, … , S Efrat, F M Matschinsky
Y Liang, … , S Efrat, F M Matschinsky
Published June 1, 1994
Citation Information: J Clin Invest. 1994;93(6):2473-2481. https://doi.org/10.1172/JCI117256.
View: Text | PDF
Research Article

In situ glucose uptake and glucokinase activity of pancreatic islets in diabetic and obese rodents.

  • Text
  • PDF
Abstract

The present study evaluated the involvement of glucose transport and phosphorylation in glucose-stimulated insulin release from pancreatic islets. Using quantitative histochemical techniques, we investigated basal islet glucose content, islet glucose uptake in situ during acute extreme experimental hyperglycemia, and islet glucokinase activity in several animal models of diabetes and obesity. The basal islet glucose content in anaesthetized diabetic or obese rodents was either the same or higher than that in their relevant controls. The rate of glucose uptake of islet tissue in these animals after an i.v. glucose injection was different. The db+/db+ mouse and the obese Zucker rat exhibited significantly reduced islet glucose uptake rates. RIP-cHras transgenic mice, BHE/cdb rats and partially pancreatectomized rats showed normal islet glucose uptake rates. The activity of islet glucokinase was increased to a different degree related to the blood glucose level. All five animal models of diabetes or obesity exhibited either a delay or a reduction of insulin release in response to supra maximal glucose stimulation. Our results indicate that the impairment of glucose-induced insulin release in diabetes is not consistently associated with a reduction of islet glucose uptake nor a change of glucokinase activity.

Authors

Y Liang, S Bonner-Weir, Y J Wu, C D Berdanier, D K Berner, S Efrat, F M Matschinsky

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 149 8
PDF 68 9
Scanned page 425 1
Citation downloads 78 0
Totals 720 18
Total Views 738
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts