Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Mitogen-activated protein kinase and its activator are regulated by hypertonic stress in Madin-Darby canine kidney cells.
T Itoh, … , N Ueda, Y Fujiwara
T Itoh, … , N Ueda, Y Fujiwara
Published June 1, 1994
Citation Information: J Clin Invest. 1994;93(6):2387-2392. https://doi.org/10.1172/JCI117245.
View: Text | PDF
Research Article

Mitogen-activated protein kinase and its activator are regulated by hypertonic stress in Madin-Darby canine kidney cells.

  • Text
  • PDF
Abstract

Madin-Darby canine kidney cells behave like the renal medulla and accumulate small organic solutes (osmolytes) in a hypertonic environment. The accumulation of osmolytes is primarily dependent on changes in gene expression of enzymes that synthesize osmolytes (sorbitol) or transporters that uptake them (myo-inositol, betaine, and taurine). The mechanism by which hypertonicity increases the transcription of these genes, however, remains unclear. Recently, it has been reported that yeast mitogen-activated protein (MAP) kinase and its activator, MAP kinase-kinase, are involved in osmosensing signal transduction and that mutants in these kinases fail to accumulate glycerol, a yeast osmolyte. No information is available in mammals regarding the role of MAP kinase in the cellular response to hypertonicity. We have examined whether MAP kinase and MAP kinase-kinase are regulated by extracellular osmolarity in Madin-Darby canine kidney cells. Both kinases were activated by hypertonic stress in a time- and osmolarity-dependent manner and reached their maximal activity within 10 min. Additionally, it was suggested that MAP kinase was activated in a protein kinase C-dependent manner. These results indicate that MAP kinase and MAP kinase-kinase(s) are regulated by extracellular osmolarity.

Authors

T Itoh, A Yamauchi, A Miyai, K Yokoyama, T Kamada, N Ueda, Y Fujiwara

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 147 3
PDF 47 11
Scanned page 248 4
Citation downloads 70 0
Totals 512 18
Total Views 530
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts