Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117188

Cytokines suppress human islet function irrespective of their effects on nitric oxide generation.

D L Eizirik, S Sandler, N Welsh, M Cetkovic-Cvrlje, A Nieman, D A Geller, D G Pipeleers, K Bendtzen, and C Hellerström

Department of Medical Cell Biology, Uppsala University, Sweden.

Find articles by Eizirik, D. in: JCI | PubMed | Google Scholar

Department of Medical Cell Biology, Uppsala University, Sweden.

Find articles by Sandler, S. in: JCI | PubMed | Google Scholar

Department of Medical Cell Biology, Uppsala University, Sweden.

Find articles by Welsh, N. in: JCI | PubMed | Google Scholar

Department of Medical Cell Biology, Uppsala University, Sweden.

Find articles by Cetkovic-Cvrlje, M. in: JCI | PubMed | Google Scholar

Department of Medical Cell Biology, Uppsala University, Sweden.

Find articles by Nieman, A. in: JCI | PubMed | Google Scholar

Department of Medical Cell Biology, Uppsala University, Sweden.

Find articles by Geller, D. in: JCI | PubMed | Google Scholar

Department of Medical Cell Biology, Uppsala University, Sweden.

Find articles by Pipeleers, D. in: JCI | PubMed | Google Scholar

Department of Medical Cell Biology, Uppsala University, Sweden.

Find articles by Bendtzen, K. in: JCI | PubMed | Google Scholar

Department of Medical Cell Biology, Uppsala University, Sweden.

Find articles by Hellerström, C. in: JCI | PubMed | Google Scholar

Published May 1, 1994 - More info

Published in Volume 93, Issue 5 on May 1, 1994
J Clin Invest. 1994;93(5):1968–1974. https://doi.org/10.1172/JCI117188.
© 1994 The American Society for Clinical Investigation
Published May 1, 1994 - Version history
View PDF
Abstract

Cytokines have been proposed as inducers of beta-cell damage in human insulin-dependent diabetes mellitus via the generation of nitric oxide (NO). This concept is mostly based on data obtained in rodent pancreatic islets using heterologous cytokine preparations. The present study examined whether exposure of human pancreatic islets to different cytokines induces NO and impairs beta-cell function. Islets from 30 human pancreata were exposed for 6-144 h to the following human recombinant cytokines, alone or in combination: IFN-gamma (1,000 U/ml), TNF-alpha (1,000 U/ml), IL-6 (25 U/ml), and IL-1 beta (50 U/ml). After 48 h, none of the cytokines alone increased islet nitrite production, but IFN-gamma induced a 20% decrease in glucose-induced insulin release. Combinations of cytokines, notably IL-1 beta plus IFN-gamma plus TNF-alpha, induced increased expression of inducible NO synthase mRNA after 6 h and resulted in a fivefold increase in medium nitrite accumulation after 48 h. These cytokines did not impair glucose metabolism or insulin release in response to 16.7 mM glucose, but there was an 80% decrease in islet insulin content. An exposure of 144 h to IL-1 beta plus IFN-gamma plus TNF-alpha increased NO production and decreased both glucose-induced insulin release and insulin content. Inhibitors of NO generation, aminoguanidine or NG-nitro-L-arginine, blocked this cytokine-induced NO generation, but did not prevent the suppressive effect of IL-1 beta plus IFN-gamma plus TNF-alpha on insulin release and content. In conclusion, isolated human islets are more resistant to the suppressive effects of cytokines and NO than isolated rodent islets. Moreover, the present study suggests that NO is not the major mediator of cytokine effects on human islets.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1968
page 1968
icon of scanned page 1969
page 1969
icon of scanned page 1970
page 1970
icon of scanned page 1971
page 1971
icon of scanned page 1972
page 1972
icon of scanned page 1973
page 1973
icon of scanned page 1974
page 1974
Version history
  • Version 1 (May 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts