Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117185

Endogenous nitric oxide enhances prostaglandin production in a model of renal inflammation.

D Salvemini, K Seibert, J L Masferrer, T P Misko, M G Currie, and P Needleman

Department of Molecular Pharmacology, Monsanto Company, St Louis, Missouri 63167.

Find articles by Salvemini, D. in: PubMed | Google Scholar

Department of Molecular Pharmacology, Monsanto Company, St Louis, Missouri 63167.

Find articles by Seibert, K. in: PubMed | Google Scholar

Department of Molecular Pharmacology, Monsanto Company, St Louis, Missouri 63167.

Find articles by Masferrer, J. in: PubMed | Google Scholar

Department of Molecular Pharmacology, Monsanto Company, St Louis, Missouri 63167.

Find articles by Misko, T. in: PubMed | Google Scholar

Department of Molecular Pharmacology, Monsanto Company, St Louis, Missouri 63167.

Find articles by Currie, M. in: PubMed | Google Scholar

Department of Molecular Pharmacology, Monsanto Company, St Louis, Missouri 63167.

Find articles by Needleman, P. in: PubMed | Google Scholar

Published May 1, 1994 - More info

Published in Volume 93, Issue 5 on May 1, 1994
J Clin Invest. 1994;93(5):1940–1947. https://doi.org/10.1172/JCI117185.
© 1994 The American Society for Clinical Investigation
Published May 1, 1994 - Version history
View PDF
Abstract

The interaction between nitric oxide (NO) and cyclooxygenase (COX) was studied in a rabbit model of renal inflammation, the ureteral obstructed hydronephrotic kidney (HNK). Ex vivo perfusion of the HNK but not the control kidney (e.g., unobstructed contralateral kidney, CLK), led to a time-dependent release of nitrite (NO2-), a breakdown product of NO. Stimulation of the HNK with bradykinin (BK) evoked a time-dependent increase in prostaglandin E2 (PGE2) production. NG-monomethyl-L-arginine (L-NMMA), which blocks the activity of both constitutive and inducible nitric oxide synthase (cNOS and iNOS), aminoguanidine, a recently described selective iNOS inhibitor, dexamethasone, or cycloheximide abolished the release of NO2- and attenuated the exaggerated BK-induced PGE2 production. This supports the existence of iNOS and COX-2 in the HNK. In the CLK, BK elicited release of both NO2- and PGE2 but this did not augment with time. L-NMMA but not aminoguanidine, dexamethasone, or cycloheximide attenuated NO2- and PGE2 release indicative of the presence of constitutive but not inducible NOS or COX. The current study suggests that the endogenous release of NO from cNOS in the CLK activates a constitutive COX resulting in optimal PGE2 release by BK. In addition, in the HNK, NO release from iNOS activates the induced COX resulting in markedly increased release of proinflammatory prostaglandin. The broader implication of this study is that the cyclooxygenase isozymes are potential receptor targets for nitric oxide.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1940
page 1940
icon of scanned page 1941
page 1941
icon of scanned page 1942
page 1942
icon of scanned page 1943
page 1943
icon of scanned page 1944
page 1944
icon of scanned page 1945
page 1945
icon of scanned page 1946
page 1946
icon of scanned page 1947
page 1947
Version history
  • Version 1 (May 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts