Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Direct quantification of apparent binding indices from quinidine-induced in vivo conduction delay in canine myocardium.
F N Haugland, … , S B Johnson, D L Packer
F N Haugland, … , S B Johnson, D L Packer
Published April 1, 1994
Citation Information: J Clin Invest. 1994;93(4):1798-1811. https://doi.org/10.1172/JCI117165.
View: Text | PDF
Research Article

Direct quantification of apparent binding indices from quinidine-induced in vivo conduction delay in canine myocardium.

  • Text
  • PDF
Abstract

To characterize quantitatively the quinidine (QUIN)-induced conduction delay (CD) in vivo, canine ventricular activation times were examined with an epicardial mapping technique. A high-resolution index of normalized (N) QUIN CD, derived from all 56 recording sites, was used to quantify QUIN effect. Repetitive stimulation elicited monoexponential increases in CD(N), the rates of which were a linear function of interpulse recovery interval, tr. Steady-state CD(N) was also linearly related to an exponential function of tr and drug uptake rates. The frequency-dependent properties of QUIN in 14 dogs were characterized by apparent binding and unbinding rates of ka = 7.1 +/- 3.5 x 10(6) M-1 s-1, la = 81 +/- 51 s-1 for activated, and kr = 12.6 +/- 11.3 x 10(3) M-1 s-1, lr = 0.51 +/- 0.26 s-1 for resting states. ka and la were similar to values previously derived in canine Purkinje fibers. Drug unbinding at resting potentials was faster in vivo than previously observed in vitro. The time constant of recovery from QUIN block extracted from the interpulse recovery rate was also identical to that determined from post-mature stimulus diastolic scanning. As predicted by the two-state model, similar binding rates were also derived from declining CD(N) elicited by step decreases in heart rate. These findings represent a complete quantitative description of use-dependent QUIN CD in vivo and provide a firm foundation for characterizing antiarrhythmic drug action under physiologic and pathologic conditions.

Authors

F N Haugland, S B Johnson, D L Packer

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts