Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Treatment with oral clotrimazole blocks Ca(2+)-activated K+ transport and reverses erythrocyte dehydration in transgenic SAD mice. A model for therapy of sickle cell disease.
L De Franceschi, N Saadane, M Trudel, S L Alper, C Brugnara, Y Beuzard
L De Franceschi, N Saadane, M Trudel, S L Alper, C Brugnara, Y Beuzard
View: Text | PDF
Research Article

Treatment with oral clotrimazole blocks Ca(2+)-activated K+ transport and reverses erythrocyte dehydration in transgenic SAD mice. A model for therapy of sickle cell disease.

  • Text
  • PDF
Abstract

Prevention of red cell K+ and water loss is a therapeutic strategy for sickle cell disease. We have investigated in vitro and in vivo the effects of clotrimazole (CLT) and miconazole (MIC) on transgenic mice red cells expressing hemoglobin SAD. CLT blocked the Gardos channel (ID50 75 +/- 22 nM; n = 3) and the A23187-induced dehydration of Hbbs/Hbbthal SAD 1 mouse erythrocytes in vitro. Oral treatment with CLT (160 mg/kg per d) and MIC (100 mg/kg per d) inhibited the Gardos channel in both SAD 1 and control (Hbbs/Hbbthal) mice. In the SAD 1 mice only, cell K+ content increased, and mean corpuscular hemoglobin concentration and cell density decreased. After 7 d of treatment, the hematocrit of SAD 1, CLT-treated animals also increased. All changes were fully reversible. Long-term treatments of SAD 1 mice with oral CLT (80 mg/kg per d for 28 d) lead to sustained increases in cell K+ content and hematocrit and sustained decreases in mean corpuscular hemoglobin concentration and cell density, with no changes in animals treated with vehicle alone. Thus, CLT and MIC can reverse dehydration and K+ loss of SAD 1 mouse erythrocytes in vitro and in vivo, further supporting the potential utility of these drugs in the treatment of sickle cell anemia.

Authors

L De Franceschi, N Saadane, M Trudel, S L Alper, C Brugnara, Y Beuzard

×

Loading citation information...
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts