Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117144

Oscillating activity of a Ca(2+)-sensitive K+ channel. A prerequisite for migration of transformed Madin-Darby canine kidney focus cells.

A Schwab, L Wojnowski, K Gabriel, and H Oberleithner

Physiologisches Institut, Universität Würzburg, Germany.

Find articles by Schwab, A. in: PubMed | Google Scholar

Physiologisches Institut, Universität Würzburg, Germany.

Find articles by Wojnowski, L. in: PubMed | Google Scholar

Physiologisches Institut, Universität Würzburg, Germany.

Find articles by Gabriel, K. in: PubMed | Google Scholar

Physiologisches Institut, Universität Würzburg, Germany.

Find articles by Oberleithner, H. in: PubMed | Google Scholar

Published April 1, 1994 - More info

Published in Volume 93, Issue 4 on April 1, 1994
J Clin Invest. 1994;93(4):1631–1636. https://doi.org/10.1172/JCI117144.
© 1994 The American Society for Clinical Investigation
Published April 1, 1994 - Version history
View PDF
Abstract

Migration plays an important role in the formation of tumor metastases. Nonetheless, little is known about electrophysiological phenomena accompanying or underlying migration. Previously, we had shown that in migrating alkali-transformed Madin-Darby canine kidney focus (MDCK-F) cells a Ca(2+)-sensitive 53-pS K+ channel underlies oscillations of the cell membrane potential. The present study defines the role this channel plays in migration of MDCK-F cells. We monitored migration of individual MDCK-F cells by video imaging techniques. Under control conditions, MDCK-F cells migrated at a rate of 0.90 +/- 0.03 microns/min (n = 201). Application of K+ channel blockers (1 and 5 mmol/liter Ba2+, 5 mmol/liter tetraethylammonium, 100 mumol/liter 4-aminopyridine, 5 nmol/liter charybdotoxin) caused marked inhibition of migration, pointing to the importance of K+ channels in migration. Using patch-clamp techniques, we demonstrated the sensitivity of the Ca(2+)-sensitive 53-pS K+ channel to these blockers. Blockade of this K+ channel and inhibition of migration were closely correlated, indicating the necessity of oscillating K+ channel activity for migration. Migration of MDCK-F cells was also inhibited by furosemide or bumetanide, blockers of the Na+/K+/2Cl- cotransporter. We present a model for migration in which oscillations of cell volume play a central role. Whenever they are impaired, migration is inhibited.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1631
page 1631
icon of scanned page 1632
page 1632
icon of scanned page 1633
page 1633
icon of scanned page 1634
page 1634
icon of scanned page 1635
page 1635
icon of scanned page 1636
page 1636
Version history
  • Version 1 (April 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts