Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117142

Effects of insulin on ovine fetal leucine kinetics and protein metabolism.

J R Milley

Department of Pediatrics, University of Utah School of Medicine, Salt Lake City 84132.

Find articles by Milley, J. in: PubMed | Google Scholar

Published April 1, 1994 - More info

Published in Volume 93, Issue 4 on April 1, 1994
J Clin Invest. 1994;93(4):1616–1624. https://doi.org/10.1172/JCI117142.
© 1994 The American Society for Clinical Investigation
Published April 1, 1994 - Version history
View PDF
Abstract

Fetuses of eight pregnant ewes (114-117 d of gestation) were used to study whether fetal insulin concentration affects fetal protein accretion and, if so, whether such changes are caused by effects on protein synthesis or protein breakdown. Fetal leucine kinetics were measured by infusion of [1-14C]leucine during each of three protocols: (I) low vs. normal insulin concentration; (II) low vs. high insulin concentration; and (III) low vs. high insulin concentration during amino acid infusion to keep leucine concentration constant. Fetal leucine concentration (233 +/- 20 vs. 195 +/- 18 microM) and clearance (48.3 +/- 4.4 vs. 54.2 +/- 5.5 ml/kg per min) were the only aspects of fetal leucine kinetics that changed during protocol I. During protocol II, insulin infusion decreased fetal leucine concentration (222 +/- 22 vs. 175 +/- 22), decreased fetal leucine disposal (11.63 +/- 0.89 vs. 12.55 +/- 0.89 mumol/kg per min), increased leucine clearance (48.0 +/- 4.2 vs. 57.6 +/- 6.5 ml/kg per min), decreased leucine decarboxylation (1.77 +/- 0.17 vs. 2.04 +/- 0.21 mumol/kg per min), decreased nonoxidative leucine disposal (9.81 +/- 0.78 vs. 10.51 +/- 0.74 mumol/kg per min), decreased release of leucine from fetal protein (7.43 +/- 1.08 vs. 8.38 +/- 0.84 mumol/kg per min), but did not change the accretion of leucine into protein. In contrast, when leucine concentrations (205 +/- 25 vs. 189 +/- 23) were maintained (protocol III), insulin infusion did not change fetal leucine disposal, decarboxylation, or nonoxidative disposal although leucine clearance still rose (55.4 +/- 5.0 vs. 64.4 +/- 5.9 ml/kg/min). Fetal release of leucine from protein, however, decreased (7.46 +/- 0.83 vs. 8.57 +/- 0.71 mumol/kg per min) and the accretion of leucine into protein increased (3.27 +/- 0.30 vs. 1.80 +/- 0.32 mumol/kg/min). These findings show that insulin decreases fetal protein breakdown. If insulin-induced hypoaminoacidemia occurs, protein synthesis decreases so that no net accretion of protein occurs. If fetal amino acid concentrations are maintained, however, insulin itself does not affect protein synthesis, and fetal protein accretion increases.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1616
page 1616
icon of scanned page 1617
page 1617
icon of scanned page 1618
page 1618
icon of scanned page 1619
page 1619
icon of scanned page 1620
page 1620
icon of scanned page 1621
page 1621
icon of scanned page 1622
page 1622
icon of scanned page 1623
page 1623
icon of scanned page 1624
page 1624
Version history
  • Version 1 (April 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts